Answer:
Revolving nosepiece
Explanation:
The revolving nosepiece is one of the parts of a microscope, used for holding the objective lenses. They can be turned to put a particular objective lens in place to be used in order to vary magnification.
Answer:
No, not necessarily
Explanation:
If an object is moving with an acceleration that causes its speed to be reduced, there will be a moment in which it reaches v = 0, but this doesn't necessarily mean that the acceleration isn't acting anymore. If the object continues its movement with the same acceleration, it's velocity will become negative.
An example of an object that has zero velocity but non-zero acceleration:
If you throw an object in the air with a certain velocity, it will move vertically, reducing its velocity in a 9,8
rate (which is the acceleration caused by gravity). At a certain point, the object will reach its maximum height, and will start to fall. In the exact moment that it reaches the maximum height, before it starts falling, its velocity is zero, but gravity is still acting on the object (this is the reason why it starts falling instead of just being stopped at that point). Therefore, at that point, the object has zero velocity but an acceleration of 9,8
.
Answer:
A physical change is a change to the physical—as opposed to chemical—properties of a substance. They are usually reversible. The physical properties of a substance include such characteristics as shape (volume and size), color, texture, flexibility, density, and mass.
Answer:
147.7 N
221.55 Nm
Explanation:
P = Pressure = 100000 Pa
= Mass-specific gas constant = 287.015 J/kg k
T = Temperature = 10+273 = 283 K
C = Drag coefficient = 1.1
A = Area
r = Radius = 0.2 m
v = Speed of wind = 
L = Length of pole
Density

Drag force

Force on the circular sign is 147.7 N

Bending moment at the bottom of the pole is 221.55 Nm
Answer:
Explanation:
The rod will act as pendulum for small oscillation .
Time period of oscillation

angular frequency ω = 2π / T
= 
b )
ω = 20( given )
velocity = ω r = ω l
Let the maximum angular displacement in terms of degree be θ .
1/2 m v ² = mgl ( 1 - cosθ ) ,
[ l-lcosθ is loss of height . we have applied law of conservation of mechanical energy .]
.5 ( ω l )² = gl( 1 - cos θ )
.5 ω² l = g ( 1 - cosθ )
1 - cosθ = .5 ω² l /g
cosθ = 1 - .5 ω² l /g
θ can be calculated , if value of l is given .