v = x/t
v = average velocity, x = displacement, t = elapsed time
Given values:
x = 6km south, t = 60min
Plug in and solve for v:
v = 6/60
v = 0.1km/min south
Answer:
same problem is here also bro i cannot find this plz help anyone
Sound waves....................................
U=10 m/s
v=30 m/s
t=6 sec
therefore, a=(v-u)/t
=(30-10)/6
=(10/3) ms^-2
now, displacement=ut+0.5*a*t^2
=60+ 0.5*(10/3)*36
=120 m
And you can solve it in another way:
v^2=u^2+2as
or, s=(v^2-u^2)/2a
=(900-100)/6.6666666.......
=120 m
Answer: 996m/s
Explanation:
Formula for calculating velocity of wave in a stretched string is
V = √T/M where;
V is the velocity of wave
T is tension
M is the mass per unit length of the wire(m/L)
Since the second wire is twice as far apart as the first, it will be L2 = 2L1
Let V1 and V2 be the speed of the shorter and longer wire respectively
V1 = √T/M1... 1
V2 = √T/M2... 2
Since V1 = 249m/s, M1 = m/L1 M2 = m/L2 = m/2L1
The equations will now become
249 = √T/(m/L1) ... 3
V2 = √T/(m/2L1)... 4
From 3,
249² = TL1/m...5
From 4,
V2²= 2TL1/m... 6
Dividing equation 5 by 6 we have;
249²/V2² = TL1/m×m/2TL1
{249/V2}² = 1/2
249/V2 = (1/2)²
249/V2 = 1/4
V2 = 249×4
V2 = 996m/s
Therefore the speed of the wave on the longer wire is 996m/s