Answer:
no 2 A graph with the x axis labelled X and Y axis labelled Y
Answer:
The magnitude of the maximum possible torque exerted on the coil is 5.73 x 10⁻³ Nm
Explanation:
Given;
number of turns of the circular coil, N = 49.5 turns
radius of the coil, r = 5.10 cm = 0.051 m
magnitude of the magnetic field, B = 0.535 T
current in the coil, I = 26.5 mA = 0.0265 A
The magnitude of the maximum possible torque exerted on the coil is calculated as;
τ = NIAB
where;
A is the area of the coil
A = πr² = π(0.051)² = 0.00817 m²
Substitute the given values and solve for the maximum torque
τ = (49.5) x (0.0265) x (0.00817) x (0.535)
τ = 0.00573 Nm
τ = 5.73 x 10⁻³ Nm
Answer: 1.39 s
Explanation:
We can solve this problem with the following equations:
(1)
(2)
Where:
is the length the steel wire streches (taking into account 1mm=0.001 m)
is the length of the steel wire before being streched
is the force due gravity (the weight) acting on the pendulum with mass 
is the transversal area of the wire
is the Young modulus for steel
is the period of the pendulum
is the acceleration due gravity
Knowing this, let's begin by finding
:
(3)
Where
is the diameter of the wire
(4)
(5)
Knowing this area we can isolate
from (1):
(6)
And substitute
in (2):
(7)
(8)
Finally:

<h2>
Answer: 469 feet</h2>
Explanation:
This problem is a good example of Vertical motion, where the main equation for this situation is:
(1)
Where:
is the height of the stone at 6s (the value we want to find)
is the initial height of the stone
is the initial velocity of the stone
is the time at which we need to find the height
is the acceleration due to gravity
Having this clear, let's find
from (1):
(2)
Finally:
This is the height of the stone at t=6s