The system's tension is 616 N and acceleration is 5.6 
<u>Explanation:</u>
From newton’s second law of motion which state that net force acting on a body is product of mass of a body and acceleration of a body which is given as,

Where,
is net force acting on body
is mass of body
a is acceleration of body
Given values
Table mass (m) = 30 kg
Hanging mass (m) = 40 kg

Put the value for m = hanging mass = 40 kg and
, we get

The tension in the ropes, 
Here, m as hanging mass
T = tension, N or 
m = mass, kg
g = gravitational force, 
a = acceleration, 

Answer:
Check below for the explanation
Explanation:
Since it is stated that the ring is dropped from a height, h, through a non uniform magnetic field, two kinds of force will act on the ring, namely:
- A magnetic force (that is non uniform since the field is non uniform)
- Gravitational force
A certain amount of torque is provided by the non uniform magnetic force on the ring while the force gravity pulls it down. Due to the downward pull by the force of gravity on the ring and the torque acting on it as a result of the non uniform magnetic force, the ring begins to rotate.
Answer:
The final speed of puck 1 is 0.739 m/s towards west and puck 2 is 2.02 m/s towards east .
Explanation:
Let us consider east as positive direction and west as negative direction .
Given
mass of puck 1 , 
mass of puck 2 , 
initial speed of puck 1 , 
initial speed of puck 2 , 
Final speed of puck 1 and puck 2 be
respectively
Apply conservation of linear momentum

=>
=>
-----(A)
Since collision is perfectly elastic , coefficient restitution e=1

=>
------(B)
From equation (A) and (B)

and 
Thus the final speed of puck 1 is 0.739 m/s towards west and puck 2 is 2.02 m/s towards east .
Because of the position on the equator, the change in rotation of the Earth on its axis throughout the year doesn't affect it much. Unlike the poles, Quito is almost constantly in direct view of the sun. So, because of lack of change in rotation, the daylight hours are hardly varied as Quito is almost constantly in more or less the same spot in relation to the sun.
Answer: 60mph
Explanation:
Given the following :
First leg travel:
Distance = 30 miles
Time of travel= 30 minutes = 0.5 hour
Second leg travel:
Distance = 60 miles
Time of travel = one hour
Average speed :
Speed = total Distance / time of travel
Total distance in miles = (30 + 60) miles = 90 miles
Total time of travel = 1 hour + 0.5 hour = 1.5 hours
Average speed = total distance traveled / total travel time
Average speed = 90 miles / 1.5 hours
Average speed = 60 miles / hour
= 60mph