B,A,D,C u can check this by using formula of momentum P=mv..
<h2>
The magnitude 24 (
) of the acceleration of the particle when the particle is not moving.</h2>
Explanation:
Given,
A particle moving along the x-axis has a position given by
m ........ (1)
To find, the magnitude (
) of the acceleration of the particle when the particle is not moving = ?
Differentiating equation (1) w.r.t, 't', we get

⇒
....... (2)
⇒ 
⇒ 
⇒ t = 2 s
Again, differentiating equation (2) w.r.t, 't', we get

Put t = 2, we get

Thus, the magnitude 24 (
) of the acceleration of the particle when the particle is not moving.
Answer:
it could be either or because it doesnt just depend on the height but it also depends on the pressure but then again the question didnt ask anything about the pressure so the answer should be true
Explanation:
First, we have a change in the velocity from 85 to 164 m/s in 10 sec.
Then, we calculate the <u>acceleration </u>as:

Hence we need to calculate the velocity of the space vehicle at t = 2 sec using the first equation of motion:

Then, using the second equation of motion to calculate the distance:


Answer:
The minimum speed is 14.53 m/s.
Explanation:
Given that,
r = 11 m
Friction coefficient = 0.51
Suppose we need to find the minimum speed, that the cylinder must make a person move at to ensure they will stick to the wall
When frictional force becomes equal to or greater than the weight of person
Then, he sticks to the wall
We need to calculate the minimum speed
Using formula for speed

Where,


Put the value into the formula


Hence, The minimum speed is 14.53 m/s.