Answer:
3.5 × 10⁵ g of salt
Explanation:
<em>What is the mass (grams) of salt in 10.0 m³ of ocean water?</em>
We have this data:
- 1.000 mol salt is equal to 58.44 g salt
- 1.0 L of ocean water contains 0.60 mol of salt
We will need the following relations:
We can use proportions:

Answer:
0.04 M
Explanation:
Given data:
Mass of Na₂SO₄= 14.2 g
Volume of solution = 2.50 L
Molarity of solution = ?
Solution:
Number of moles of Na₂SO₄:
Number of moles = mass/ molar mass
Number of moles = 14.2 g/ 142.04 g/mol
Number of moles = 0.1 mol
Molarity :
Molarity = number of moles of solute / volume of solution in L
Molarity = 0.1 mol / 2.50 L
Molarity = 0.04 M
Answer:
10.335
Explanation:
An object was carefully weighed on three different balances
Each of these balances were zeroed before weighing
The masses that were weighed are as follows
10.35 g , 10.355 g, 10.30 g
Therefore the average value of these measurements can be calculated as follows
The total number of mass is 3
= 10.30 + 10.355 + 10.30/3
= 31,005/3
= 10.335
Hence the average value of these measurements is 10.335
The answer is 14.
Hope this helps
Answer: alkaline earth metals (group-IIA)
Explanation:
The element which donates the electron is known as electropositive element and forms a positively charged ion called as cation. The element which accepts the electrons is known as electronegative element and forms a negatively charged ion called as anion.
Alkaline earth metals donate 2 valence electrons to acquire noble gas configuration.
For example: Berrylium is the first alkaline earth metal with atomic number of 4 and thus has 4 electrons
Electronic configuration of berrylium:
![[Be]:4:1s^22s^2](https://tex.z-dn.net/?f=%5BBe%5D%3A4%3A1s%5E22s%5E2)
Berrylium atom will loose two electrons to gain noble gas configuration and form berrylium cation with +2 charge.
![[Be^{2+}]:2:1s^2](https://tex.z-dn.net/?f=%5BBe%5E%7B2%2B%7D%5D%3A2%3A1s%5E2)
Thus Elements donate 2 electron to produce a cation with a 2+ charge are alkaline earth metals.