It will be the second one
Answer:
3= Lithium (Li) = [He] 2s1
6= Carbon (C) = [He] 2s2 2p2
8=Oxygen (O)= [He] 2s2 2p4
13=Aluminium (Al)= [Ne] 3s2 3p1
U 2 can help me by marking as brainliest.........
PH is the logarithmic measure of the concentration of hydrogen ions in solution. In an aqueous system, the lowest possible concentration of H+ ions (least acidic) is 1x 10^-14. The -log(1x10^-14) = pH of 14
No, they can have potential energy
Answer:
a) The concentration of drug in the bottle is 9.8 mg/ml
b) 0.15 ml drug solution + 1.85 ml saline.
c) 4.9 × 10⁻⁵ mol/l
Explanation:
Hi there!
a) The concentration of the drug in the bottle is 294 mg/ 30.0 ml = 9.8 mg/ml
b) The drug has to be administrated at a dose of 0.0210 mg/ kg body mass. Then, the total mass of drug that there should be in the injection for a person of 70 kg will be:
0.0210 mg/kg-body mass * 70 kg = 1.47 mg drug.
The volume of solution that contains that mass of drug can be calculated using the value of the concentration calculated in a)
If 9.8 mg of the drug is contained in 1 ml of solution, then 1.47 mg drug will be present in (1.47 mg * 1 ml/ 9.8 mg) 0.15 ml.
To prepare the injection, you should take 0.15 ml of the concentrated drug solution and (2.0 ml - 0.15 ml) 1.85 ml saline
c) In the injection there is a concentration of (1.47 mg / 2.0 ml) 0.735 mg/ml.
Let´s convert it to molarity:
0.735 mg/ml * 1000 ml/l * 0.001 g/mg* 1 mol/ 15000 g = 4.9 × 10⁻⁵ mol/l