Explanation:
- Initial velocity (u) = 10 m/s
- Final velocity (v) = 30 m/s
- Mass (m) = 2400 kg
- Force (F) = 12000 N
Let us find the time taken first.
→ F = ma
- Acceleration (a) = (v – u)/t
→ 12000 = 2400 × (30 – 10)/t
→ 12000 ÷ 2400 = (20)/t
→ 5 = 20/t
→ 5t = 20
→ t = 20 ÷ 5
→ <u>t</u><u> </u><u>=</u><u> </u><u>4</u><u> </u><u>seconds</u>
Now, find the acceleration.
→ a = (v – u)/t
→ a = (30 – 10)/4
→ a = 20/4
→ <u>a</u><u> </u><u>=</u><u> </u><u>5</u><u> </u><u>m</u><u>/</u><u>s²</u>
Now, by using the third equation of motion,
→ v² – u² = 2as
→ (30)² – (10)² = 2 × 5 × s
→ 900 – 100 = 10s
→ 800 = 10s
→ 800 ÷ 10 = s
→ <u>8</u><u>0</u><u> </u><u>m</u><u> </u><u>=</u><u> </u><u>s</u>
Therefore, distance travelled is 80 m.
It would have 8 joules because if the box is going half the speed with the same mass the you would just divide the joules in half
H=k+log(a/c)
H-k = log(a/c)
e^{h-k}=a/c
a = ce^{h-k}
I know the process but I don't know the heat capacity of tea.. so I can't show you the process untill you give me tea's heat capacity