Answer:
780 m to travel north
Explanation:
6 m over = 750
53 degree so it will take about 2 min to reach the destination
Answer:
4515.49484 N
4329.10484 N
Explanation:
r = Radius of balloon = 4.4 m
m = Mass of balloon with instruments = 19 kg
g = Acceleration due to gravity = 9.81 m/s²
Volume of balloon

The Buoyant force = Weight of the air displaced

The buoyant force acting on the balloon is 4515.49484 N
Net force on the balloon

The net force on the balloon is given by 4329.10484 N
As the balloon goes up the pressure outside reduces as the density of air decreases while the air pressure inside the balloon is high hence, the radius of the balloon tend to increase as it rises to higher altitude.
Answer:



Explanation:
By analyzing the torque on the wheel we get:
Solving for T: 
On the object:
Replacing our previous value for T:

The relation between angular and linear acceleration is:

So,

Solving for α:

The linear acceleration will be:

And finally, the tension will be:

These are the values of all the variables: α, a, T
1) By looking at the table of the visible spectrum, we see that blue light has a wavelength in the range [450-490 nm], while red light has wavelength in the range [620-750 nm]. Therefore, red light has longer wavelength than blue light.
2) The frequency f of an electromagnetic wave is related to its wavelength

by the formula

where c is the speed of light. We see that the frequency is inversely proportional to the wavelength, so the shorter the wavelength, the greater the frequency. In this case, blue light has shorter wavelength than red light, so blue light has greater frequency than red light.
3) The energy of the photons of an electromagnetic wave is given by

where h is the Planck constant and f is the frequency. We see that the energy is directly proportional to the frequency, so the greater the frequency, the greater the energy. In this problem, blue light has greater frequency than red light, so blue light has also greater energy than red light.