Answer:

Explanation:
Given that,
Speed of transverse wave, v₁ = 20 m/s
Tension in the string, T₁ = 6 N
Let T₂ is the tension required for a wave speed of 30 m/s on the same string. The speed of a transverse wave in a string is given by :
........(1)
T is the tension in the string
is mass per unit length
It is clear from equation (1) that :





So, the tension of 13.5 N is required for a wave speed of 30 m/s. Hence, this is the required solution.
Answer:
a) Her feet are in the air for 0.73+0.41 = 1.14 seconds
b) Her highest height above the board is 0.82 m
c) Her velocity when her feet hit the water is 7.16 m/s
Explanation:
t = Time taken
u = Initial velocity = 4 m/s
v = Final velocity
s = Displacement
a = Acceleration due to gravity = 9.81 m/s²


b) Her highest height above the board is 0.82 m
Total height she would fall is 0.82+1.8 = 2.62 m

a) Her feet are in the air for 0.73+0.41 = 1.14 seconds

c) Her velocity when her feet hit the water is 7.16 m/s
Answer:
2991.47 [cm^2]
Explanation:
To solve this problem we must perform a dimensional analysis and use the corresponding conversion values:
![3.22[ft^{2}]*\frac{12^{2}in^{2} }{1^{2}ft^{2}} *\frac{2.54^{2}cm^{2} }{1^{2}in^{2} } \\2991.47[cm^{2}]](https://tex.z-dn.net/?f=3.22%5Bft%5E%7B2%7D%5D%2A%5Cfrac%7B12%5E%7B2%7Din%5E%7B2%7D%20%7D%7B1%5E%7B2%7Dft%5E%7B2%7D%7D%20%2A%5Cfrac%7B2.54%5E%7B2%7Dcm%5E%7B2%7D%20%20%7D%7B1%5E%7B2%7Din%5E%7B2%7D%20%7D%20%5C%5C2991.47%5Bcm%5E%7B2%7D%5D)
Answer:
because when an object approaches the speed of light, it's mass starts to increase exponentially, and would be infinite at the speed of light. It would therefore require MORE than an infinite amount of energy to accelerate even a single electron to the speed of light
Answer:
8 mph
Explanation:
4 miles in half hour so you add 4 more for the second half