Answer: m= 2.16 kg
Explanation: Momentum is expressed in the following formula:
p = mv
Derive to find m:
m = p / v
= 4.75 kg.m/s / 2.2 m/s
= 2.16 kg
Cancel out m/s and the remaining unit is in kg.
The answer is, "B", "Ammonia".
Answer:
Abdominal
Sitting up, postural alignment
Biceps
Lifting, pulling
Deltoids
Overhead lifting
Erector Spinae
Postural alignment
Gastronemius & Soleus
Push off for walking, standing on tiptoes
Gluteus
Climbing stairs, walking, standing up
Hamstrings
Walking
Latissimus Dorsi & Rhomboids
Postural alignment, pulling open a door
Obliques
Rotation and side flexion of body
Pectoralis
Push up, pull up, bench press
Quadriceps
Climbing stairs, walking, standing up
Trapezius
Moves head sideways
Triceps
Pushing
God bless you. Because my soul almost left my body when i had to do this.
Answer:
Explanation:
Applied force, F = 18 N
Coefficient of static friction, μs = 0.4
Coefficient of kinetic friction, μs = 0.3
θ = 27°
Let N be the normal reaction of the wall acting on the block and m be the mass of block.
Resolve the components of force F.
As the block is in the horizontal equilibrium, so
F Cos 27° = N
N = 18 Cos 27° = 16.04 N
As the block does not slide so it means that the syatic friction force acting on the block balances the downwards forces acting on the block .
The force of static friction is μs x N = 0.4 x 16.04 = 6.42 N .... (1)
The vertically downward force acting on the block is mg - F Sin 27°
= mg - 18 Sin 27° = mg - 8.172 ... (2)
Now by equating the forces from equation (1) and (2), we get
mg - 8.172 = 6.42
mg = 14.592
m x 9.8 = 14.592
m = 1.49 kg
Thus, the mass of block is 1.5 kg.
Answer:
The correct option is;
A. The potential energy between both like charges and like poles increases as they move closer together
Explanation:
Here we have that when we move the like poles of two bar magnets close to each other, there is an increased resistance in the continuing motion, therefore for each extra gap closer achieved, there is an increase in potential energy
Similarly, when two like charges are brought closer together, the potential energy, or the energy available to push the two like charges apart increases charge as the as the charges are brought closer together
Therefore, the correct option is the potential energy between both like charges and like poles increases as they move closer together.