Answer:
The answer to your question is P2 = 0.78 atm
Explanation:
Data
Temperature 1 = T1 = 263°K Temperature 2 = T2 = 298°K
Volume 1 = V1 = 24 L Volume 2 = V2 = 35 L
Pressure 1 = P1 = 1 Pressure 2 = P2 = ?
Process
1.- To solve this problem use the Combined gas law
P1V1/T1 = P2V2/T2
-Solve for P2
P2 = P1V1T2 / T1V2
-Substitution
P2 = (1)(24)(298) / (263)(35)
-Simplification
P2 = 7152 / 9205
-Result
P2 = 0.777
or P2 = 0.78 atm
Answer:
The answer is Relative plenitude alludes to the amount of a specific isotope is available in a given measure of test.
Explanation:
The 'relative plenitude' of an isotope implies the level of that specific isotope that happens in nature. Most components are comprised of a blend of isotopes. The total of the rates of the particular isotopes must indicate 100%. The relative nuclear mass is the weighted normal of the isotopic masses. The percent plenitude of every sort of sweets reveals to you what number of every sort of Aufbau there are in each 100 CANDIES. Percent wealth is additionally relative plenitude. This is only a method for giving us a photo on which kind exists all the more every now and again.
Answer:
a substance made by mixing other substances together.
Explanation:
A mixture is a substance made by mixing two or more substances together.
Answer:
True => ΔH°f for C₆H₆ = 49 Kj/mole
Explanation:
See Thermodynamic Properties Table in appendix of most college level general chemistry texts. The values shown are for the standard heat of formation of substances at 25°C. The Standard Heat of Formation of a substance - by definition - is the amount of heat energy gained or lost on formation of the substance from its basic elements in their standard state. C₆H₆(l) is formed from Carbon and Hydrogen in their basic standard states. All elements in their basic standard states have ΔH°f values equal to zero Kj/mole.