Answer:
The answer is zero please Give me Brainly
Explanation:
Answer:
Wavelength = 0.15 nm
Frequency =
Explanation:
We have given photon energy E = 8 KeV = 8000 eV
In question it is given that 
So 
Plank's constant 
We know that photon energy is given by 
So 

Now wavelength 
Answer:
The compression of the spring is 24.6 cm
Explanation:
magnitude of the charge on the left, q₁ = 4.6 x 10⁻⁷ C
magnitude of the charge on the right, q₂ = 7.5 x 10⁻⁷ C
distance between the two charges, r = 3 cm = 0.03 m
spring constant, k = 14 N/m
The attractive force between the two charges is calculated using Coulomb's law;

The extension of the spring is calculated as follows;
F = kx
x = F/k
x = 3.45 / 14
x = 0.246 m
x = 24.6 cm
The compression of the spring is 24.6 cm
Answer:
42 m
Explanation:
= initial velocity of the car = 24 m/s
= final velocity of the car = 0 m/s
μ = coefficient of kinetic friction = 0.7
g = acceleration due to gravity = 9.8 m/s²
a = acceleration due to kinetic frictional force = - μg = - (0.7)(9.8) = - 6.86 m/s²
d = distance through which the car skids
Using the kinematics equation

Inserting the values

d = 42 m
Answer:
(a) Charge density σ=6.6375×10²nC/m²
(b) Total charge Q=1.47×10²nC
Explanation:
Given Data
A=47.0 cm =0.47 m
Electric field E=75.0 kN/C
To find
(a) Charge density σ
(b)Total Charge Q
Solution
For (a) charge density σ
From Gauss Law we know that
Φ=Q/ε₀.......eq(i)
Where
Φ is electric flux
Q is charge
ε₀ is permittivity of space
And from the definition of flux
Φ = EA
The flux is electric field passing perpendicularly through the surface
Put the this Φ in equation(i)
EA
=Q/ε₀
where Q(charge)=σA
EA=(σA)/ε₀
E=σ/ε₀
σ=ε₀E

σ=6.6375×10²nC/m²
For (b) total charge Q
Q=σA
