Answer:
4.5kgm/s
Explanation:
Change in momentum is expressed as
Change in momentum = m(v-u)
M is the mass
V is the final velocity
u is the initial velocity
Given
m=0.45kg
v = 30m/s
u = 20m/s
Substitute
Change in momentum = 0.45(30-20)
Change in momentum = 0.45×10
Change in momentum = 4.5kgm/s
Answer:
- The work made by the gas is 7475.69 joules
- The heat absorbed is 7475.69 joules
Explanation:
<h3>
Work</h3>
We know that the differential work made by the gas its defined as:
![dW = P \ dv](https://tex.z-dn.net/?f=dW%20%3D%20%20P%20%5C%20dv)
We can solve this by integration:
![\Delta W = \int\limits_{s_1}^{s_2}\,dW = \int\limits_{v_1}^{v_2} P \ dv](https://tex.z-dn.net/?f=%5CDelta%20W%20%3D%20%5Cint%5Climits_%7Bs_1%7D%5E%7Bs_2%7D%5C%2CdW%20%3D%20%5Cint%5Climits_%7Bv_1%7D%5E%7Bv_2%7D%20P%20%5C%20dv)
but, first, we need to find the dependence of Pressure with Volume. For this, we can use the ideal gas law
![P \ V = \ n \ R \ T](https://tex.z-dn.net/?f=P%20%5C%20V%20%3D%20%5C%20n%20%5C%20R%20%5C%20T)
![P = \frac{\ n \ R \ T}{V}](https://tex.z-dn.net/?f=P%20%3D%20%5Cfrac%7B%5C%20n%20%5C%20R%20%5C%20T%7D%7BV%7D)
This give us
![\int\limits_{v_1}^{v_2} P \ dv = \int\limits_{v_1}^{v_2} \frac{\ n \ R \ T}{V} \ dv](https://tex.z-dn.net/?f=%20%5Cint%5Climits_%7Bv_1%7D%5E%7Bv_2%7D%20P%20%5C%20dv%20%3D%20%5Cint%5Climits_%7Bv_1%7D%5E%7Bv_2%7D%20%5Cfrac%7B%5C%20n%20%5C%20R%20%5C%20T%7D%7BV%7D%20%5C%20dv%20)
As n, R and T are constants
![\int\limits_{v_1}^{v_2} P \ dv = \ n \ R \ T \int\limits_{v_1}^{v_2} \frac{1}{V} \ dv](https://tex.z-dn.net/?f=%20%5Cint%5Climits_%7Bv_1%7D%5E%7Bv_2%7D%20P%20%5C%20dv%20%3D%20%5C%20n%20%5C%20R%20%5C%20T%20%5Cint%5Climits_%7Bv_1%7D%5E%7Bv_2%7D%20%5Cfrac%7B1%7D%7BV%7D%20%5C%20dv%20)
![\Delta W= \ n \ R \ T \left [ ln (V) \right ]^{v_2}_{v_1}](https://tex.z-dn.net/?f=%20%5CDelta%20W%3D%20%5C%20n%20%5C%20R%20%5C%20T%20%20%5Cleft%20%5B%20ln%20%28V%29%20%5Cright%20%5D%5E%7Bv_2%7D_%7Bv_1%7D%20)
![\Delta W = \ n \ R \ T ( ln (v_2) - ln (v_1 )](https://tex.z-dn.net/?f=%20%5CDelta%20W%20%3D%20%5C%20n%20%5C%20R%20%5C%20T%20%20%28%20ln%20%28v_2%29%20-%20ln%20%28v_1%20%29%20)
![\Delta W = \ n \ R \ T ( ln (v_2) - ln (v_1 )](https://tex.z-dn.net/?f=%20%5CDelta%20W%20%3D%20%5C%20n%20%5C%20R%20%5C%20T%20%20%28%20ln%20%28v_2%29%20-%20ln%20%28v_1%20%29%20)
![\Delta W = \ n \ R \ T ln (\frac{v_2}{v_1})](https://tex.z-dn.net/?f=%20%5CDelta%20W%20%3D%20%5C%20n%20%5C%20R%20%5C%20T%20%20ln%20%28%5Cfrac%7Bv_2%7D%7Bv_1%7D%29)
But the volume is:
![V = \frac{\ n \ R \ T}{P}](https://tex.z-dn.net/?f=V%20%3D%20%5Cfrac%7B%5C%20n%20%5C%20R%20%5C%20T%7D%7BP%7D)
![\Delta W = \ n \ R \ T ln(\frac{\frac{\ n \ R \ T}{P_2}}{\frac{\ n \ R \ T}{P_1}} )](https://tex.z-dn.net/?f=%20%5CDelta%20W%20%3D%20%5C%20n%20%5C%20R%20%5C%20T%20%20ln%28%5Cfrac%7B%5Cfrac%7B%5C%20n%20%5C%20R%20%5C%20T%7D%7BP_2%7D%7D%7B%5Cfrac%7B%5C%20n%20%5C%20R%20%5C%20T%7D%7BP_1%7D%7D%20%29)
![\Delta W = \ n \ R \ T ln(\frac{P_1}{P_2})](https://tex.z-dn.net/?f=%20%5CDelta%20W%20%3D%20%5C%20n%20%5C%20R%20%5C%20T%20%20ln%28%5Cfrac%7BP_1%7D%7BP_2%7D%29)
Now, lets use the value from the problem.
The temperature its:
![T = 27 \° C = 300.15 \ K](https://tex.z-dn.net/?f=T%20%3D%2027%20%5C%C2%B0%20C%20%3D%20300.15%20%5C%20K)
The ideal gas constant:
![R = 8.314 \frac{m^3 \ Pa}{K \ mol}](https://tex.z-dn.net/?f=R%20%3D%208.314%20%5Cfrac%7Bm%5E3%20%5C%20Pa%7D%7BK%20%5C%20mol%7D)
So:
![\Delta W = \ 1 mol \ 8.314 \frac{m^3 \ Pa}{K \ mol} \ 300.15 \ K ln (\frac{20 atm}{1 atm})](https://tex.z-dn.net/?f=%20%5CDelta%20W%20%3D%20%5C%201%20mol%20%5C%208.314%20%5Cfrac%7Bm%5E3%20%5C%20Pa%7D%7BK%20%5C%20mol%7D%20%5C%20300.15%20%5C%20K%20%20ln%20%28%5Cfrac%7B20%20atm%7D%7B1%20atm%7D%29%20)
![\Delta W = 7475.69 joules](https://tex.z-dn.net/?f=%20%5CDelta%20W%20%3D%207475.69%20joules)
<h3>Heat</h3>
We know that, for an ideal gas, the energy is:
![E= c_v n R T](https://tex.z-dn.net/?f=E%3D%20c_v%20n%20R%20T)
where
its the internal energy of the gas. As the temperature its constant, we know that the gas must have the energy is constant.
By the first law of thermodynamics, we know
![\Delta E = \Delta Q - \Delta W](https://tex.z-dn.net/?f=%5CDelta%20E%20%3D%20%5CDelta%20Q%20-%20%5CDelta%20W)
where
is the Work made by the gas (please, be careful with this sign convention, its not always the same.)
So:
![\Delta E = 0](https://tex.z-dn.net/?f=%5CDelta%20E%20%3D%200)
![\Delta Q = \Delta W](https://tex.z-dn.net/?f=%5CDelta%20Q%20%3D%20%5CDelta%20W)
Answer:
The greater the difference in electronegativity between two covalently bonded atoms, the greater the bond's percentage of ionic character.
Explanation:
Bond polarity (i.e the separation of electric charge along a bond) and ionic character (amount of electron sharing) increase with an increasing difference in electronegativity.
Therefore, we can say that, the greater the difference in electronegativity between two covalently bonded atoms, the greater the bond's percentage of ionic character.
Answer:
a. Your mass with the basketball is 55.5 kg
b. Your new velocity is 0.045 m/s
Explanation:
We first add your weight and the basketballs weight to get 55.5 kg.
Then to find b. we use the equation: v final = (m1 * v1) / (m1 +m2)
So m1 is the basketball which is 0.5 kg and v1 is 5 m/s. So the top half is (0.5 * 5)
The bottom half is just our weights added together.