None of the choices is correct.
If two runners take the same amount of time to run a mile,
they have the same average speed. But their velocities
are not the same unless both runners begin and end their
run at the same points.
Speed is (distance covered) divided by (time to cover the distance).
Velocity is not. It's something different.
'Velocity' is not just a bigger word for 'speed'.
The difference in the mass of carbon dioxide in 500 kg of air in 2013 compared to 1800 is 0.06 Kg
<h3>Data obtained from the question</h3>
- Year 1800 percent = 0.028%
- Year 2013 percent = 0.040%
- Mass of air = 500 Kg
- Difference =?
<h3>How to determine the mass of CO₂ in 500 Kg in year 1800</h3>
- Year 1800 percent = 0.028%
- Mass of air = 500 Kg
- Mass of CO₂ =?
Mass = percent × mass of air
Mass of CO₂ = 0.028% × 500
Mass of CO₂ = 0.14 Kg
<h3>How to determine the mass of CO₂ in 500 Kg in year 2013</h3>
- Year 1800 percent = 0.040%
- Mass of air = 500 Kg
- Mass of CO₂ =?
Mass = percent × mass of air
Mass of CO₂ = 0.040% × 500
Mass of CO₂ = 0.2 Kg
<h3>How to determine the difference</h3>
- Mass of CO₂ in year 1800 = 0.14 Kg
- Mass of CO₂ in year 2013 = 0.2 Kg
- Difference =?
Difference = mass in 2013 - mass in 1800
Difference = 0.2 - 0.14
Difference = 0.06 Kg
Learn more about composition:
brainly.com/question/11617445
#SPJ1
Answer:
86.4 hrs
Explanation:
The amount of bacteria is initially 1
It doubles every 24 hrs.
After first 24 hrs, the amount = 2
After next 24 hrs = 4
After next 24 hrs = 8
After next 24 hrs = 16
After next 24 hrs = 32
After next 24 hrs = 64
After next 24 hrs = 128
After next 24 hrs = 256
Total time taken to reach 256 = 24 x 8 = 192 hrs
For the bacteria culture on the rocket that travels at a speed of 0.893c relative to the earth, this time is contracted by the relationship
t = t'(1 - ¥^2)^0.5
Where t is the contracted time =?
t' is the time on earth
¥ = v/c
Where v is the speed of the rocket
c is the speed of light
since v = 0.893c
¥ = 0.893
Substituting, we have
t = 192 x (1 - 0.893^2)^0.5
t = 192 x 0.2025^0.5
t = 192 x 0.45 = 86.4 hrs
The electric field at (x,y,z) its equal to the negative of the gradient if the electric potential.
We have
V(x, y, z) = 2x² - 3y² + 5z
so
E(x, y, z) = -grad(V) = -(dV/dx i + dV/dy j + dV/dz k)
where d/d(variable) is meant to be a partial derivative with respect to that variable. The partial derivatives are
dV/dx = 4x
dV/dy = -6y
dV/dz = 5
and so the electric field at any point is
E(x, y, z) = -4x i + 6y j - 5k
and at (3, 4, 5) it is
E(3, 4, 5) = -12i + 24j - 5k