Both valves are closed during the power stroke.
While the fuel is burning in the cylinder, you want
all the force of the expanding gases to push the
piston down ... you don't want any of the gases
or their pressure escaping.
If either of the valves was open, even just a crack,
then part of the gases would go blooey out the valve,
and some pressure would be lost that's supposed to be
pushing the piston.
Explanation:
An electrified comb is charged comb ( let say by running it through the hair) and when it is brought in the proximity of pieces of paper, the pieces tend to cling to it. This happens because the charged comb induces an opposite charge in the paper pieces and as opposite charges attract each other, the pieces are clinged.
V₁(O2) = 6.50<span> L
</span>p₁(O2) = 155 atm
V₂(acetylene) = <span>4.50 L
</span>p₂(acetylene) =?
According to Boyle–Mariotte law (At constant temperature and unchanged amount of gas, the product of pressure and volume is constant) we can compare two gases that have ideal behavior and the law can be usefully expressed as:
V₁/p₁ = V₂/p₂
6.5/155 = 4.5/p₂
0.042 x p₂ = 4.5
p₂ = 107.3 atm
The momentum of a 5kg object that has a velocity of 1.2m/s is 6.0kgm/s.
<h3> MOMENTUM:</h3>
Momentum of a substance is the product of its mass and velocity. That is;
Momentum (p) = mass (m) × velocity (v)
According to this question, an object has a mass of 5kg and velocity of 1.2m/s. The momentum is calculated thus:
Momentum = 5kg × 1.2m/s
Momentum = 6kgm/s.
Therefore, the momentum of a 5kg object that has a velocity of 1.2m/s is 6.0kgm/s.
Learn more about momentum at: brainly.com/question/250648?referrer=searchResults