Number of moles of oxygen = x
number of moles of nitrogen = y
x = 2y
initial pressure, p1 = 0.8 atm
final pressure, p2 = 1.10 atm
At constant volume and temperature p1 / n1 = p2 / n2
=> p1 / p2 = n1 / n2
n1 = x + y = 2y + y = 3y
n2 = 0.2 + 3y
=> p1 / p2 = 3y / (0.2 + 3y)
=> 0.8 / 1.10 = 3y / (0.2 + 3y)
=> 0.8 (0.2 + 3y) = 1.10 (3y)
0.16 + 2.4y = 3.3y
=> 3.3y - 2.4y = 0.16
=> 0.9y = 0.16
=> y = 0.16 / 0.9
=. x = 2*0.16/0.9 = 0.356
Answer: 0.356 moles O2
Answer:
He assumed wrongly
Explanation:
It happened this way because the person assumed wrongly.
Most other compounds have the same physical appearance as water especially when in liquid form.
- This can be a very tricky one in the laboratory.
- The sense of taste is not the best way to fathom what a particular compound is made up of.
- This is the reason why this student or person faced this sort of problem.
- Water has different properties that can be tested for using simple techniques in the laboratory.
Answer: Molar concentration of the tree sap have to be 0.783 M
Explanation:
To calculate the concentration of solute, we use the equation for osmotic pressure, which is:
where,
= osmotic pressure of the solution = 19.6 atm
i = Van't hoff factor = 1 (for non-electrolytes)
R = Gas constant =
T = temperature of the solution =
Putting values in above equation, we get:


Thus the molar concentration of the tree sap have to be 0.783 M to achieve this pressure on a day when the temperature is 32°C