Answer: 
Explanation:
According to the Arrhenius equation,

or,
![\log (\frac{K_2}{K_1})=\frac{Ea}{2.303\times R}[\frac{1}{T_1}-\frac{1}{T_2}]](https://tex.z-dn.net/?f=%5Clog%20%28%5Cfrac%7BK_2%7D%7BK_1%7D%29%3D%5Cfrac%7BEa%7D%7B2.303%5Ctimes%20R%7D%5B%5Cfrac%7B1%7D%7BT_1%7D-%5Cfrac%7B1%7D%7BT_2%7D%5D)
where,
= rate constant at
= 
= rate constant at
= 
= activation energy for the reaction = 262 kJ/mol = 262000J/mol
R = gas constant = 8.314 J/mole.K
= initial temperature = 
= final temperature = 
Now put all the given values in this formula, we get
![\log (\frac{6.1\times 10^{-8}}{K_2})=\frac{262000}{2.303\times 8.314J/mole.K}[\frac{1}{600.0K}-\frac{1}{775.0K}]](https://tex.z-dn.net/?f=%5Clog%20%28%5Cfrac%7B6.1%5Ctimes%2010%5E%7B-8%7D%7D%7BK_2%7D%29%3D%5Cfrac%7B262000%7D%7B2.303%5Ctimes%208.314J%2Fmole.K%7D%5B%5Cfrac%7B1%7D%7B600.0K%7D-%5Cfrac%7B1%7D%7B775.0K%7D%5D)


Therefore, the value of the rate constant at 775.0 K is 
a person running a car parked in a driveway
Explanation:
A person running a car parked in a driveway is an example of translational kinetic energy.
Translational motion is the movement of body along a straight path.
Translational kinetic energy refers to the energy of a body moving along a straight path.
- It is function of the mass and velocity of the moving body.
- The motion of train on its track is an example of this form of energy
- A fired bullet, falling object all experience translational kinetic energy.
learn more:
Translational kinetic energy brainly.com/question/9924094
#learnwithBrainly
The factor that does not influence stream velocity is DISCHARGE.
Stream velocity refers to the speed with which the water in a stream is flowing. The factors which affect stream velocity include channel size, channel shape, turbulent flow and gradient.
Answer:
C24H50
Explanation:
The empirical fomula's molar mass is 169.25 g/mol.
We know the molecular formula's molar mass is 338 g/mol.
338/169.25= 1.99 or approximately 2