Answer:
a) w = 2.57 rad / s
, b) α = 3.3 rad / s²
Explanation:
a) Let's use the conservation of mechanical energy, we will write it in two points the highest and when touching the ground
Initial. Higher
Em₀ = U = m g h
Final. Touching the ground
= K = ½ I w²
How energy is conserved
Em₀ =
mg h = ½ I w2
The moment of specific object inertia
I = m L²
We replace
m g h = ½ (mL²) w²
w² = 2g h / L²
The height of the object is the length of the bar
h = L
w = √ 2g / L
w = √ (2 9.8 / 2.97)
w = 2.57 rad / s
b) the angular acceleration can be found from Newton's second rotational law
τ = I α
W L = I α
mg L = (m L²) α
α = g / L
α = 9.8 / 2.97
α = 3.3 rad / s²
Answer:
B: False
Explanation:
In the early 19th century Jean-Baptiste Lamarck proposed the first fully formed theory of evolution. Darwin's theory would come a few decades later in 1858
The kinematics for the vertical launch we can enter the initial velocity is 11.76 m / s
Given parameters
To find
Kinematics is the part of physics that establishes the relationships between the position, velocity, and acceleration of bodies.
In this case we have a vertical launch
y = y₀ + v₀ t - ½ g t²
Where y and y₀ are the final and initial positions, respectively, v₀ the initial velocity, g the acceleration of gravity (g = 9.8 m / s²) and t the time
With the ball in hand, its position is zero
0 = 0 + v₀ t - ½ g t²
v₀ t - ½ g t² = 0
v₀ = ½ g t
Let's calculate
v₀ = ½ 9.8 2.4
v₀ = 11.76 m / s
In conclusion using kinematics for the vertical launch we can enter the initial velocity is 11.76 m / s
Learn more about vertical launch kinematics here:
brainly.com/question/15068914