Answer:
size get smaller maybe there is no object remaining
F = qE + qV × B
where force F, electric field E, velocity V, and magnetic field B are vectors and the × operator is the vector cross product. If the electron remains undeflected, then F = 0 and E = -V × B
which means that |V| = |E| / |B| and the vectors must have the proper geometrical relationship. I therefore get
|V| = 8.8e3 / 3.7e-3
= 2.4e6 m/sec
Acceleration a = V²/r, where r is the radius of curvature.
a = F/m, where m is the mass of an electron,
so qVB/m = V²/r.
Solving for r yields
r = mV/qB
= 9.11e-31 kg * 2.37e6 m/sec / (1.60e-19 coul * 3.7e-3 T)
= 3.65e-3 m
Answer/Explanation:
In chemistry, concentration is the abundance of a constituent divided by the total volume of a mixture. Several types of mathematical description can be distinguished: mass concentration, molar concentration, number concentration, and volume concentration.
A concentration refers to a subject or study within a specific major. As part of the degree coursework, concentration classes count toward your major requirements as well.
Answer:
Minimum thickness; t = 9.75 x 10^(-8) m
Explanation:
We are given;
Wavelength of light;λ = 585 nm = 585 x 10^(-9)m
Refractive index of benzene;n = 1.5
Now, let's calculate the wavelength of the film;
Wavelength of film;λ_film = Wavelength of light/Refractive index of benzene
Thus; λ_film = 585 x 10^(-9)/1.5
λ_film = 39 x 10^(-8) m
Now, to find the thickness, we'll use the formula;
2t = ½m(λ_film)
Where;
t is the thickness of the film
m is an integer which we will take as 1
Thus;
2t = ½ x 1 x 39 x 10^(-8)
2t = 19.5 x 10^(-8)
Divide both sides by 2 to give;
t = 9.75 x 10^(-8) m