Answer :
(a). The speed of the block is 0.395 m/s.
(b). No
Explanation :
Given that,
Diameter = 20.0 cm
Power = 26.0 MW
Mass = 110 kg
diameter = 20.0 cm
Distance = 100 m
We need to calculate the pressure due to laser
Using formula of pressure

![P_{r}=\dfrac{P}{Ac}Put the value into the formula[tex]P_{r}=\dfrac{26.0\times10^{6}}{\pi\times(10\times10^{-2})^2\times3\times10^{8}}](https://tex.z-dn.net/?f=P_%7Br%7D%3D%5Cdfrac%7BP%7D%7BAc%7D%3C%2Fp%3E%3Cp%3EPut%20the%20value%20into%20the%20formula%3C%2Fp%3E%3Cp%3E%5Btex%5DP_%7Br%7D%3D%5Cdfrac%7B26.0%5Ctimes10%5E%7B6%7D%7D%7B%5Cpi%5Ctimes%2810%5Ctimes10%5E%7B-2%7D%29%5E2%5Ctimes3%5Ctimes10%5E%7B8%7D%7D)

We need to calculate the force
Using formula of force


Put the value into the formula


We need to calculate the acceleration
Using formula of force

Put the value into the formula




(a). We need to calculate speed of the block
Using equation of motion

Put the value into the formula


(b). No because the velocity is very less.
Hence, (a). The speed of the block is 0.395 m/s.
(b). No
Answer:
1.8 cm
Explanation:
= mass of the singly charged positive ion = 3.46 x 10⁻²⁶ kg
= charge on the singly charged positive ion = 1.6 x 10⁻¹⁹ C
=Potential difference through which the ion is accelerated = 215 V
= Speed of the ion
Using conservation of energy
Kinetic energy gained by ion = Electric potential energy lost

= Radius of the path followed by ion
= Magnitude of magnetic field = 0.522 T
the magnetic force on the ion provides the necessary centripetal force, hence

<h2>Question:</h2>
An automobile is driving uphill. Which form of energy is not involved in this process?
<h2>Choosing:</h2>
electromagnetic
potential
kinetic
chemical
<h2>Answer:</h2>
<u>Electromagnetic</u><u> </u>
<h3>
<u>#READINGHELPSWITHLEARNING</u><u> </u></h3><h3>
<u>#CARRYONLEARNING</u><u> </u></h3><h3>
<u>#STUDYWELL</u><u> </u></h3>
Explanation:
We have,
Mass of an object is 0.5 kg
Force constant of the spring is 157 N/m
The object is released from rest when the spring is compressed 0.19 m.
(A) The force acting on the object is given by :
F = kx

(B) The force is simply given by :
F = ma
a is acceleration at that instant
