(a) Differentiate the position vector to get the velocity vector:
<em>r</em><em>(t)</em> = (3.00 m/s) <em>t</em> <em>i</em> - (4.00 m/s²) <em>t</em>² <em>j</em> + (2.00 m) <em>k</em>
<em>v</em><em>(t)</em> = d<em>r</em>/d<em>t</em> = (3.00 m/s) <em>i</em> - (8.00 m/s²) <em>t</em> <em>j</em>
<em></em>
(b) The velocity at <em>t</em> = 2.00 s is
<em>v</em> (2.00 s) = (3.00 m/s) <em>i</em> - (16.0 m/s) <em>j</em>
<em></em>
(c) Compute the electron's position at <em>t</em> = 2.00 s:
<em>r</em> (2.00 s) = (6.00 m) <em>i</em> - (16.0 m) <em>j</em> + (2.00 m) <em>k</em>
The electron's distance from the origin at <em>t</em> = 2.00 is the magnitude of this vector:
||<em>r</em> (2.00 s)|| = √((6.00 m)² + (-16.0 m)² + (2.00 m)²) = 2 √74 m ≈ 17.2 m
(d) In the <em>x</em>-<em>y</em> plane, the velocity vector at <em>t</em> = 2.00 s makes an angle <em>θ</em> with the positive <em>x</em>-axis such that
tan(<em>θ</em>) = (-16.0 m/s) / (3.00 m/s) ==> <em>θ</em> ≈ -79.4º
or an angle of about 360º + <em>θ</em> ≈ 281º in the counter-clockwise direction.
Complete question is;
Shoveling snow can be extremely taxing since the arms have such a low efficiency in this activity. Suppose a person shoveling a sidewalk metabolizes food at the rate of 800 W. (The efficiency of a person shoveling is 3%.)
(a) What is her useful power output? (b) How long will it take her to lift 3000 kg of snow 1.20 m? (This could be the amount of heavy snow on 20 m of footpath.) (c) How much waste heat transfer in kilojoules will she generate in the process?
Answer:
A) P_out = 24 W
B) t = 1470 s
C) Q = 1140.72 KJ
Explanation:
We are given;
Input Power; P_in = 800 W
Efficiency; η = 3% = 0.03
A) Formula for efficiency is;
η = P_out/P_in
Making P_out the subject, we have;
P_out = η•P_in
P_out = 0.03 × 800
P_out = 24 W
B) We know that;
Power = work done/time taken
Thus;
P_out = mgh/t
We are given;
m = 3000 kg
h = 1.20 m
Thus, time is;
t = (3000 × 9.8 × 1.2)/24
t = 1470 s
C) amount of heat wasted is calculated from;
Q = (P_in - P_out)t
Q = (800 - 24) × 1470
Q = 1,140,720 J
Q = 1140.72 KJ
The second ball should strike at double the original t value
Answer:
human body is answer according to our studies