Answer:
because all objects fall at a rate of 9.8m/s²
Answer:
Electrolysis is the process by which ionic substances are decomposed (broken down) into simpler substances when an electric current is passed through them. ... Electricity is the flow of electrons or ions. For electrolysis to work, the compound must contain ions.
Answer:
T = 3.475 s
Time period is independent from mass
Explanation:
- To reduce the human error in taking any measurements we take multiple N number of readings. Then sum up all the readings and divide by N to find an average. The error between each individual reading and the actual reading is reduced by repetition.
- We use the plot of T^2 against L to form a linear relationship between two variables. We square the entire the equation for linearize the equation.
- Given, L = 3 m . The time period is approximated by a pendulum expression given as:
T = 2*pi*sqrt ( L / g )
Where, g is the gravitational acceleration 9.81 m/s^2
- Then we have:
T = 2*pi*sqrt ( 3 / 9.81 )
T = 3.475 s
- From above expression we see that time period is independent from the mass at the end of the string but a function of pendulum geometry and kinetics.
Quasar is famous for being an intergalactic object which is billions of years away from the earth yet can still be seen, unlike the other star body, unlike giant galaxies.
Hence, the fact that quasars can be detected from distances where even the biggest and most luminous galaxies cannot be seen means that "they must be intrinsically far more luminous than the brightest galaxies."
This condition, including other related evidence gotten in recent years concerning our galaxy, has shown that quasars are probably the central nuclei of very distant, very active galaxies.
The surprising thing was that quasars and active galaxies have a lot of mass in the center of the very small volume of the space.
Therefore, the surprising thing about quasars was that due to this mass and energy they are 100 times more luminous than Milky Way which means they have high recession velocity and a very large amount of red-shifting.
To learn more about quasars, refer: brainly.com/question/9965257
#SPJ4