Answer:
1034 yrs
Explanation:
The equation to use in this question is:
t = -2.303/k log (A/A₀) where
A= present number of disintegrations
A₀ = intial number of disintegrations
k = decay constant
The decay constant we will obtain it from the given hal-life:
k: 0.693/t₁/₂, t₁/₂ = half-life ⇒
k: 0.693 / 5730 y = 1.209 x 10⁻⁴ /y⁻¹
t = - 2.303 / 1.209 x 10⁻⁴ /y⁻¹ x log (13.1/15.3) = 1034 yrs
Answer:
To increase the yield of H₂ we would use a low temperature.
For an exothermic reaction such as this, decreasing temperature increases the value of K and the amount of products at equilibrium. Low temperature increases the value of K and the amount of products at equilibrium.
Explanation:
Let´s consider the following reaction:
CO(g) + H₂O(g) ⇌ CO₂(g) + H₂(g)
When a system at equilibrium is disturbed, the response of the system is explained by Le Chatelier's Principle: <em>If a system at equilibrium suffers a perturbation (in temperature, pressure, concentration), the system will shift its equilibrium position to counteract such perturbation</em>.
In this case, we have an exothermic reaction (ΔH° < 0). We can imagine heat as one of the products. If we decrease the temperature, the system will try to raise it favoring the forward reaction to release heat and, at the same time, increasing the yield of H₂. By having more products, the value of the equilibrium constant K increases.
Rutherford's gold foil experiment proved that there was a small, dense, positively charged nucleus at the center, which contained most of the mass of the atom. Which contained electrons orbiting the nucleus.
The acid is Nitric acid and the base is Zinc hydroxide.
Any change in which the composition of material does not change that is it retains its identity but changes its state or form is known as a physical change.
The properties of metal to draw them into wires is known as ductility. When a copper is drawn into wire the only change that occurs is change in its shape and size no change will take place into its composition that is the wires are still possessing the properties of copper metal. Thus, a physical change takes place when copper is drawn into wire.