<em>Answer:</em>
<h3><em>1. Check mirrors</em></h3><h3><em>2. Put on your seat belt</em></h3>
<em>Explanation:</em>
<em>1. Checking your mirrors are very important because if someone screwed with them then it can mess up your driving. </em>
<em />
<em>2. Putting on your seat belt is a law so you must put it on and it can save your life one day. </em>
Answer:
1) Dimensions of shear rate is
.
2)Dimensions of shear stress are
Explanation:
Since the dimensions of velocity 'v' are
and the dimensions of distance 'y' are
, thus the dimensions of
become
and hence the units become
.
Now we know that the dimensions of coefficient of dynamic viscosity
are
thus the dimensions of shear stress can be obtained from the given formula as
![[\tau ]=[ML^{-1}T^{-1}]\times [T^{-1}]\\\\[\tau ]=[ML^{-1}T^{-2}]](https://tex.z-dn.net/?f=%5B%5Ctau%20%5D%3D%5BML%5E%7B-1%7DT%5E%7B-1%7D%5D%5Ctimes%20%5BT%5E%7B-1%7D%5D%5C%5C%5C%5C%5B%5Ctau%20%5D%3D%5BML%5E%7B-1%7DT%5E%7B-2%7D%5D)
Now we know that dimensions of momentum are ![[MLT^{-1}]](https://tex.z-dn.net/?f=%5BMLT%5E%7B-1%7D%5D)
The dimensions of
are ![[L^{2}T]](https://tex.z-dn.net/?f=%5BL%5E%7B2%7DT%5D)
Thus the dimensions of ![\frac{Moumentum}{Area\times time}=\frac{MLT^{-1}}{L^{2}T}=[MLT^{-2}]](https://tex.z-dn.net/?f=%5Cfrac%7BMoumentum%7D%7BArea%5Ctimes%20time%7D%3D%5Cfrac%7BMLT%5E%7B-1%7D%7D%7BL%5E%7B2%7DT%7D%3D%5BMLT%5E%7B-2%7D%5D)
Which is same as that of shear stress. Hence proved.
Answer:
a. 2.08, b. 1110 kJ/min
Explanation:
The power consumption and the cooling rate of an air conditioner are given. The COP or Coefficient of Performance and the rate of heat rejection are to be determined. <u>Assume that the air conditioner operates steadily.</u>
a. The coefficient of performance of the air conditioner (refrigerator) is determined from its definition, which is
COP(r) = Q(L)/W(net in), where Q(L) is the rate of heat removed and W(net in) is the work done to remove said heat
COP(r) = (750 kJ/min/6 kW) x (1 kW/60kJ/min) = 2.08
The COP of this air conditioner is 2.08.
b. The rate of heat discharged to the outside air is determined from the energy balance.
Q(H) = Q(L) + W(net in)
Q(H) = 750 kJ/min + 6 x 60 kJ/min = 1110 kJ/min
The rate of heat transfer to the outside air is 1110 kJ for every minute.
Answer:
a) 4.7 kΩ, +/- 5%
b) 2.0 MΩ, +/- 20%
Explanation:
a) If the resistor has the following combination of color bands:
1) Yellow = 1st digit = 4
2) Violet = 2nd digit = 7
3) Red = multiplier = 10e2
4) Gold = tolerance = +/- 5%
this means that the resistor has 4700 Ω (or 4.7 kΩ), with 5% tolerance.
b) Repeating the process for the following combination of color bands:
1) Red = 1st digit = 2
2) Black = 2nd digit = 0
3) Green = multiplier = 10e5
4) Nothing = tolerance = +/- 20%
This combination represents to a resistor of 2*10⁶ Ω (or 2.0 MΩ), with +/- 20% tolerance.