Answer:
E - Be and O
A - Mg and N
E - Li and Br
F - Ba and Cl
B - Rb and O
Explanation:
Be and O
Be is a metal that loses 2 e⁻ to form Be²⁺ and O is a nonmetal that gains 2 e⁻ to form O²⁻. For the ionic compound to be neutral, it must have the form BeO (E-MX).
Mg and N
Mg is a metal that loses 2 e⁻ to form Mg²⁺ and N is a nonmetal that gains 3 e⁻ to form O³⁻. For the ionic compound to be neutral, it must have the form Mg₃N₂ (A-M₃X₂).
Li and Br
Li is a metal that loses 1 e⁻ to form Li⁺ and Br is a nonmetal that gains 1 e⁻ to form Br⁻. For the ionic compound to be neutral, it must have the form LiBr (E-MX).
Ba and Cl
Ba is a metal that loses 2 e⁻ to form Ba²⁺ and Cl is a nonmetal that gains 1 e⁻ to form Cl⁻. For the ionic compound to be neutral, it must have the form BaCl₂ (F-MX₂).
Rb and O
Rb is a metal that loses 1 e⁻ to form Rb⁺ and O is a nonmetal that gains 2 e⁻ to form O²⁻. For the ionic compound to be neutral, it must have the form Rb₂O (B-M₂X).
I know that Lewis acids and bases are the most inclusive because it deals with electron acceptors and donators. so the answer must be A
Answer:
distilled water I guess !
Just a guess though
If you find this useful, please mark my answer as the brainliest.
Explanation:
If you find this useful, please mark my answer as the brainliest.
distilled water
Explanation:
Some students investigated osmosis in raw potato sticks. The students measured the mass of three potato sticks using an electronic balance. The students left each potato stick in one of the three different liquids for 5 hours:i. distilled water. ii. dilute sodium chloride solution. iii. concentrated sodium chloride solution. After 5 hours they measured the mass again and calculated the change in mass. 1. Predict which of the liquids would cause the largest decrease in mass of a potato stick. 2. After the experiment, the students noticed that the potato stick with the lowest mass was soft and floppy. Explain why the potato stick had become soft and floppy. 3. The students followed the same experimental procedure with boiled potato sticks and found no overall change in mass in any of the solutions. Suggest why the mass of the boiled potato sticks remained the same.
Answer:
53.29% of acetic acid is Oxygen
Explanation:
Step 1: Given data
Acetic acid it's molecular formula is HC2H3O2. This means it consists of 3 elements Carbon, Hydrogen and oxygen.
Step 2: the molar masses
The molecular mass of acetic acid is:
4* H = 4* 1.01 g/mole
2* C = 2*12 g/mole
2*O = 2* 16 g/mole
Total molar mass = 4+ 24+32 = 60.052 g/mole
Step 3: Calculate the mass percent
32 g of the 60.052 g is Oxygen
(32/60.052) *100% = 53.29%
53.29% of acetic acid is Oxygen.
Answer:

Explanation:
<u>1. Convert Molecules to Moles</u>
First, we must convert molecules to moles using Avogadro's Number: 6.022*10²³. This tells us the number of particles in 1 mole of a substance. In this case, the particles are molecules of sodium hydroxide.

Multiply by the given number of molecules.

Flip the fraction so the molecules cancel out.




<u>2. Convert Moles to Grams</u>
Next, we convert moles to grams using the molar mass.
We must calculate the molar mass using the values on the Periodic Table. Look up each individual element.
- Na: 22.9897693 g/mol
- O: 15.999 g/mol
- H: 1.008 g/mol
Since the formula has no subscripts, we can simply add the molar masses.
- NaOH: 22.9897693+15.999+1.008=39.9967693 g/mol
Use this as a ratio.

Multiply by the number of moles we calculated.

The moles of sodium hydroxide cancel.



The original measurement of molecules has 3 significant figures, so our answer must have the same. For the number we calculated, that is the thousandth place. The 0 tells us to leave the 7 in the hundredth place.

1.20*10²² molecules of sodium hydroxide is approximately 0.797 grams.