Answer : The change in boiling point is, 
Explanation :
Formula used :

where,
= change in boiling point = ?
i = Van't Hoff factor = 3 (for MgI₂ electrolyte)
= boiling point constant for water = 
m = molality = 0.615 m
Now put all the given values in this formula, we get


Therefore, the change in boiling point is, 
Answer: a. 0.26mol
b. 0.000479mol
c. 1.12mol
Explanation: Please see attachment for explanation
Answer:
Kb = [OH⁻] . [C₃H₉NH⁺] / [ C₃H₉N ]
Explanation:
The equation for the reaction of trimethylamine when it is dissolved in water is:
C₃H₉N + H₂O ⇄ C₃H₉NH⁺ + OH⁻ Kb
1 mol of trimethylamine catches a proton from the water in order to produce trimethylamonium.
It is a base, because it give OH⁻ to the medium
Expression for Kb (Molar concentration)
Kb = [OH⁻] . [C₃H₉NH⁺] / [ C₃H₉N ]
Answer:
find the number of moles of solute dissolved in solution
,
find the volume of solution in liters,
then divide moles solute by liters solution
Explanation:
Answer:
The pressure in that cylinder = 1.12atm
Explanation:
We use general gas law to calculate it. General gas law is gotten by combining Boyle's law, Charles' law and Avogadro's law. Thus
P = nRT/V
Where n = number of moles
R = the gas constant
T is the Temperature, V is the volume and P is the pressure.
Given: T = 319K, V = 24L, R = 0.0821 L.atm/K.mol
The first step is to find n using
n = mass of O2/molar mass of O2
=32.7/32
=1.0219
Now, using P =nRT/V
P = 1.0219 ×0.0821×319÷24
Therefore P = 1.12atm