Answer:
280 N
Explanation:
Applying Newton's third second law of motion,
F = m(v-u)/t................... Equation 1
Where F = Magnitude of the average force on the ball during contact, v = final velocity of the ball, u = initial velocity of the ball, t = time of contact of the ball and the wall.
Note: Let the direction of the initial velocity of the ball be positive
Given: m = 4 kg, u = 3.0 m/s, v = -4.0 m/s (bounce off), t = 0.1 s
Substitute into equation 1
F = 4(-4-3)/0.1
F = 4(-7)/0.1
F = -28/0.1
F = -280 N.
Note: The negative sign tells that the force on the ball act in opposite direction to the initial motion of the ball
Answer:
In SI units 98.1 N, 16.24 N
English units 22.053861 lbf, 3.6509144 lbf
Explanation:
g = Acceleration due to gravity
m = Mass = 10 kg
Weight on Earth

Converting to lbf

On Moon

Converting to lbf

In SI units 98.1 N, 16.24 N
English units 22.053861 lbf, 3.6509144 lbf
Answer:
I'd say C is the answer they want, though my pedantic side wants to argue for B being true as well.
The answer is C. Final position minus initial position.