Answer:
If a crest formed by one wave interferes with a trough formed by the other wave then the rope will not move at all.
Explanation:
Assume a straight rope tied to both ends is at rest. When a wave is created at one end of the rope, it travels to the other end of the rope through formation of alternative crest and trough. Due to these crest and trough the rope shifts up and down.
But when there are two waves travelling through the rope and both have opposite direction (directed towards one another) in such a way that crest formed by one wave is interfering with the trough formed by the other wave then due to this interference the waves will cancel the effects of each other on the rope and rope will be stable.
Answer:
Some examples of levers include more than one class, such as a nut cracker, a stapler, nail clippers, ice tongs and tweezers. Other levers, called single class levers include the claw end of a hammer.
Explanation:
Answer:
As indicated by Newton's law of attraction each article or body in the universe draws in every single item towards one another and that power of fascination is straightforwardly relative to the result of their masses and contrarily corresponding to the square of the distance between them.
The power of gravity between two articles will diminish as the distance between them increments. The two most significant elements influencing the gravitational power between two items are their mass and the distance between their focuses. As mass increments, so does the power of gravity, however an increment in distance mirrors a reverse proportionality, which makes that power decline dramatically.
At that point by Newton's All inclusive Law of Attractive energy;
F=GMm/R^2
Mm= result of the majority
R=Distance Between the two masses by focus.
On the off chance that R is multiplied, new force=GMm/(2R)^2
=GMm/4R^2
Unique Power/New Force=4/1
F/4=New Power
Sin of a right triangle is opposite divided by hypotenuse
in this case, that is 5/8.6 = 0.581395349<span>
</span>
you can easily remember the trig functions with this acronym:
SOH-CAH-TOA
S: Sine
O: Opposite
H: Hypotenuse
C: Cosine
A: Adjacent
H: Hypotenuse
T: Tangent
O: Opposite
A: Adjacent
The specific gravity is how the density of the object compares to the density of water. Water's density is 1gram per milliliter. We just need to figure out the density of the object.
The object is .8 kg and it displaces 500mL of water, so the density is the mass divided by the volume. Since the density of water is given in grams, we have to convert the objects mass from kg to g and then we can get the density.
.8kg * 1000g/kg = 800 grams
So
800g/500ml = 1.6grams/mL this is the density.
So divide the density of your object by the density of water, which is 1g/mL, you get 1.6 as the specific gravity. This means the object is 1.6 times more dense than water.