Answer:
160 gm
Explanation:
Five times as much water means you can dissolve 5 times as much potassium nitrate 5 x 32 = 160 gm <u> <===== this seems unlikely though as I doubt 32 g of potassium nitrate will dissolve in only 1 cm^3 of water 1 cm^3 of water is only 1 gm of water </u>
An inert gas will not react with either the reactants or the products, so it will have no effect on the product/reactant ratio, and therefore, it will have no effect on equilibrium.
Answer:
Explanation:
A supersaturated solution is unstable—it contains more solute (in this case, sugar) than can stay in solution—so as the temperature decreases, the sugar comes out of the solution, forming crystals. The lower the temperature, the more molecules join the sugar crystals, and that is how rock candy is created.
Answer:
Gas
Increase the pressure
Explanation:
Let's refer to the attached phase diagram for CO₂ (not to scale).
<em>At -57 °C and 1 atm, carbon dioxide is in which phase?</em>
If we look at the intersection between -57°C and 1 atm, we can see that CO₂ is in the gas phase.
<em>At 10°C and 2 atm carbon dioxide is in the gas phase. From these conditions, how could the gaseous CO₂ be converted into liquid CO₂?</em>
Since at 10°C and 2 atm carbon dioxide is below the triple point, the only way to convert it into liquid is by increasing the pressure (moving up in the vertical direction).
Answer:
The mass of SO2 will be equal to the sum of the mass of S and O2.
Explanation:
This can be explained by the <em>Law of Conservation of Mass</em>. This law states that mass can neither be created nor destroyed. Knowing this, we can say that the reactants of a chemical reaction must be equal to the products.
In this case, the reactants Sulfur (S) and Oxygen (O2) must equal the mass of the product Sulfur Dioxide (SO2). Therefore, the statement <em>"The mass of SO2 will be equal to the sum of the mass of S and O2" </em>is correct.