Answer:
(a) The normal freezing point of water (J·K−1·mol−1) is
(b) The normal boiling point of water (J·K−1·mol−1) is 
(c) the chemical potential of water supercooled to −5.0°C exceed that of ice at that temperature is 109J/mole
Explanation:
Lets calculate
(a) - General equation -
=
= 
→ phases
ΔH → enthalpy of transition
T → temperature transition
=
=
(
is the enthalpy of fusion of water)
= 
(b) 
=
(
is the enthalpy of vaporization)
= 
(c)
=
°
°
=
°
°![C)]](https://tex.z-dn.net/?f=C%29%5D)
ΔT
°
°

= 109J/mole
I’m not too sure I hope someone answers for you
Answer:
(3R,4R)-4-bromohexan-3-ol
Explanation:
In this case, we have reaction called <u>halohydrin formation</u>. This is a <u>markovnikov reaction</u> with <u>anti configuration</u>. Therefore the halogen in this case "Br" and the "OH" must have <u>different configurations</u>. Additionally, in this molecule both carbons have the <u>same substitution</u>, so the "OH" can go in any carbon.
Finally, in the product we will have <u>chiral carbons</u>, so we have to find the absolute configuration for each carbon. On carbon 3 we will have an "R" configuration on carbon 4 we will have also an "R" configuration. (See figure 1)
I hope it helps!
Answer:
RbOH
Explanation:
For this question, we have to remember what is the definition of a base. A base is a compound that has the <u>ability to produce hydroxyl ions</u>
, so:

With this in mind we can write the <u>reaction for each substance:</u>




The only compound that fits with the definition is
, so this is our <u>base</u>.
I hope it helps!
Answer:
A) pH of Buffer solution = 4.59
B) pH after 5.0 ml of 2.0 M NaOH have been added to 400 ml of the original buffer solution = 4.65
Explanation:
This is the Henderson-Hasselbalch Equation:
![pH = pKa + log\frac{[conjugate base]}{[acid]}](https://tex.z-dn.net/?f=pH%20%3D%20pKa%20%2B%20log%5Cfrac%7B%5Bconjugate%20base%5D%7D%7B%5Bacid%5D%7D)
to calculate the pH of the following Buffer solutions.