Answer:
The Phosphorylated glucose(glucose +inorganic phosphate), with the energy supplied from ATP hydrolysis formed glucose 6- phosphate, which is later converted to 2 molecules of fructose 6-phosphate- this is phosphorylation.And represented the fate of glucose -6-phosphate.
The fructose 6-phosphate are converted to triose phosphate- which is a 2-molecules of 3C compound. The latter is oxidized by NAD→ NADH+ to form intermediates in the glycolytic pathways .
These intermediates are converted to ribose 5-phosphates in the presence of transketolase and transaldolase enzymes.And they are finally converted to pyruvate in the glycolytic pathway with the production of 2ATPs per molecule of glucose.
Basically the phosphate pathway reaction is very slow due to enzyme catalysis.
Answer:
16 percent
Explanation:
Just answered the question
Answer:
Ca(OH)₂ + H₂SO₄ → CaSO₄ + H₂O
Explanation:
Chemical equation:
Ca(OH)₂ + H₂SO₄ → CaSO₄ + H₂O
Balanced chemical equation:
Ca(OH)₂ + H₂SO₄ → CaSO₄ + 2H₂O
The given reaction is double displacement reaction in which anion and cation of both reactant exchanged with each other. Calcium hydroxide react with sulfuric acid and form calcium sulfate and water.
Double replacement:
It is the reaction in which two compound exchange their ions and form new compounds.
AB + CD → AD +CB
We can write the balanced equation for the synthesis reaction as
H2(g) + Cl2(g) → 2HCl(g)
We use the molar masses of hydrogen chloride gas HCl and hydrogen gas H2 to calculate for the mass of hydrogen gas H2 needed:
mass of H2 = 146.4 g HCl *(1 mol HCl / 36.46 g HCl) * (1 mol H2 / 2 mol HCl) *
(2.02 g H2 / 1 mol H2)
= 4.056 g H2
We also use the molar masses of hydrogen chloride gas HCl and chlorine gas CL2 to calculate for the mass of hydrogen gas H2:
mass of CL2 = 146.4 g HCl *(1 mol HCl / 36.46 g HCl) * (1 mol Cl2 / 2 mol HCl) *
(70.91 g Cl2 / 1 mol Cl2)
= 142.4 g Cl2
Therefore, we need 4.056 grams of hydrogen gas and 142.4 grams of chlorine gas to produce 146.4 grams of hydrogen chloride gas.
Answer : The mass in grams of calcium sulfate is 0.16 grams.
Explanation :
Molarity : It is defined as the number of moles of solute present in one litre of solution.
Formula used :

Solute is, 
Given:
Molarity of
= 0.0025 mol/L
Molar mass of
= 136 g/mole
Volume of solution = 485 mL
Now put all the given values in the above formula, we get:


Thus, the mass in grams of calcium sulfate is 0.16 grams.