Answer: (C) Although the average kinetic energy of the colliding substances increases, this has no influence on activation energy.
Explanation:
After increasing the temperature of the reaction , the rate of the chemical reaction increases due to increase in the average kinetic energy of the particles. At increased temperature high proportions of particles can react making the reaction faster.
Answer:
The ΔH is 5.5 kJ/mol and the reaction is endothermic.
Explanation:
To calculate the ∆H (heat of reaction) of the combustion reaction, that is, the heat that accompanies the entire reaction, you must make the total sum of all the heats of the products and of the reagents affected by their stoichiometric coefficient ( number of molecules of each compound participating in the reaction) and finally subtract them:
Combustion enthalpy = ΔH = ∑H products - ∑Hreactants
In this case:
ΔH = 15.7 kJ/mol - 10.2 kJ/mol= 5.5 kJ/mol
An endothermic reaction is one whose enthalpy value is positive, that is, the system absorbs heat from the environment (ΔH> 0).
<u><em>The ΔH is 5.5 kJ/mol and the reaction is endothermic.</em></u>
The answer is a cation, I may be wrong but cation is plus and anion is subtract
Answer:
0.2 mL stock solution, 0.8 solvent, 0.1 mL first solution and 0.9 solvent
Explanation:
The final volume for fist solution is 1 mL and concentration must will be 1/5, then 1 mL/5=0.2 mL. For complete the 1 mL add the missing solvent volume 1 mL-0.2 mL=0.8 mL. For second solution, assuming final volume is 1 mL, and concentration 1/10, then we have 1 mL /10=0.1 mL solution 1/5. Completing volume, 1 mL-0.1 mL= 0.9 mL solvent.