Answer: The actual tracking weight of a stereo cartridge that is set to track at 3 g on a particular changer can be regarded as a continuous rv X with the following
Explanation:
Answer:
<em>the % recovery of aluminum product is 80.5%</em>
<em>the % purity of the aluminum product is 54.7%</em>
<em></em>
Explanation:
feed rate to separator = 2500 kg/hr
in one hour, there will be 2500 kg/hr x 1 hr = 2500 kg of material is fed into the machine
of this 2500 kg, the feed is known to contain 174 kg of aluminium and 2326 kg of rejects.
After the separation, 256 kg is collected in the product stream.
of this 256 kg, 140 kg is aluminium.
% recovery of aluminium will be = mass of aluminium in material collected in the product stream ÷ mass of aluminium contained in the feed material
% recovery of aluminium = 140kg/174kg x 100% = <em>80.5%</em>
% purity of the aluminium product = mass of aluminium in final product ÷ total mass of product collected in product stream
% purity of the aluminium product = 140kg/256kg
x 100% = <em>54.7%</em>
Answer:
a) 149 kJ/mol, b) 6.11*10^-11 m^2/s ,c) 2.76*10^-16 m^2/s
Explanation:
Diffusion is governed by Arrhenius equation

I will be using R in the equation instead of k_b as the problem asks for molar activation energy
I will be using

and
°C + 273 = K
here, adjust your precision as neccessary
Since we got 2 difusion coefficients at 2 temperatures alredy, we can simply turn these into 2 linear equations to solve for a) and b) simply by taking logarithm
So:

and

You might notice that these equations have the form of

You can solve this equation system easily using calculator, and you will eventually get

After you got those 2 parameters, the rest is easy, you can just plug them all including the given temperature of 1180°C into the Arrhenius equation

And you should get D = 2.76*10^-16 m^/s as an answer for c)
Answer: The overhead percentage is 7.7%.
Explanation:
We call overhead, to all those bytes that are delivered to the physical layer, that don't carry real data.
We are told that we have 700 bytes of application data, so all the other bytes are simply overhead, i.e. , 58 bytes composed by the transport layer header, the network layer header, the 14 byte header at the data link layer and the 4 byte trailer at the data link layer.
So, in order to assess the overhead percentage, we divide the overhead bytes between the total quantity of bytes sent to the physical layer, as follows:
OH % = (58 / 758) * 100 = 7.7 %
Answer:
Explained
Explanation:
This situation can occur because of various factors such as:
- Gradual deterioration of lubrication and coolant.
- change of environmental condition such as temperature, humidity, moisture, etc.
- Change in the properties of incoming raw material
- An increase or decrease in the temperature of the heat treating operation
- Debris interfering with the manufacturing process.