1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
wel
3 years ago
15

An air-conditioning system operates at a total pressure of 1 atm and consists of a heating section and a humidifier that supplie

s wet steam (saturated water vapor) at 1008C. Air enters the heating section at 108C and 70 percent relative humidity at a rate of 35 m3/min, and it leaves the humidifying section at 208C and 60 percent relative humidity. Determine (a) the temperature and relative humidity of air when it leaves the heating section, (b) the rate of heat transfer in the heating section, and (c) the rate at which water is added to the air in the humidifying section.

Engineering
1 answer:
Marianna [84]3 years ago
4 0

Correct question is;

An air-conditioning system operates at a total pressure of 1 atm and consists of a heating section and a humidifier that supplies wet steam (saturated water vapor) at 100°C. Air enters the heating section at 10°C and 70 percent relative humidity at a rate of 35 m3/min, and it leaves the humidifying section at 20°C and 60 percent relative humidity. Determine (a) the temperature and relative humidity of air when it leaves the heating section, (b) the rate of heat transfer in the heating section, and (c) the rate at which water is added to the air in the humidifying section.

Answer:

A) Temperature at state 2: T2 = 19.5°C and Relative Humidity at state 2: Φ2 = 37.8%

B) Q' = 420.01 KJ/min

C) m'w = 0.1472 Kg/min

Explanation:

This question depicts a steady state process and as such the mass flow rate of dry air will remain constant during the entire process.

A) Now, from the psychometric chart attached, at temperatures of T1 = 10°C & T3 = 20°C, Relative humidities; Φ2 = 70% & Φ2 = 60% and at pressure of 1 atm, we have;

Enthalpy at state 1;h1 = 23.5 Kj/kg dry air

Absolute humidity at state 1;ω1 = ω2 = 0.0053 kg of water per kg dry air

Enthalpy at state 3;h3 = 42.3 KJ/Kg dry air

Absolute humidity at state 3; ω3 = 0.0087 kg of water per Kg dry air

Specific volume at state 1;υ1 = 0.809 m³/kg

The formula for energy balance for the humidifying is given as;

h3 = h2 + hg(ω3 - ω2)

Where hg is the enthalpy of wet steam.

From second table attached, hg at 100°C is 2675.6 KJ/kg

Thus;

Making h2 the subject, we have;

h2 = h3 + hg(ω2 - ω3)

Plugging in the relevant values we have;

h2 = 42.3 + 2675.6(0.0053 - 0.0087)

h2 = 33.2 KJ/kg

Still using the psychrometric chart attached at ω2 = 0.0053 and h2 = 33.2 KJ/kg, we have;

Temperature at state 2: T2 = 19.5°C and Relative Humidity at state 2: Φ2 = 37.8%

B) to determine the rate of heat transfer, let's first find the mass flow rate first;

m' = V1'/υ1

Thus, m' = 35/0.809

m' = 43.3 kg/min

Thus, rate of heat transfer is given by;

Q' = m'(h2 - h1)

Plugging in the relevant values, gives;

Q' = 43.3(33.2 - 23.5)

Q' = 420.01 KJ/min

C) the rate at which water is added to the air in the humidifying section is given by;

m'w = m'( ω3 - ω2)

m'w = 43.3(0.0087 - 0.0053)

m'w = 0.1472 Kg/min

You might be interested in
Initialize the tuple team_names with the strings 'Rockets', 'Raptors', 'Warriors', and 'Celtics' (The top-4 2018 NBA teams at th
Drupady [299]

Answer:

#Initialise a tuple

team_names = ('Rockets','Raptors','Warriors','Celtics')

print(team_names[0])

print(team_names[1])

print(team_names[2])

print(team_names[3])

Explanation:

The Python code illustrates or printed out the tuple team names at the end of a season.

The code displayed is a function that will display these teams as an output from the program.

4 0
3 years ago
When block C is in position xC = 0.8 m, its speed is 1.5 m/s to the right. Find the velocity of block A at this instant. Note th
Amanda [17]

Answer:

The answer is "2 m/s".

Explanation:

The triangle from of the right angle:

\to (x_c-0.8)+(1.5+y_4) +\sqrt{x_c^2 + 1.5^2}= constant

Differentiating the above equation:

\to V_c +V_A+ \frac{X_cV_c}{\sqrt{x_c^2 +1}}=0\\\\\to 1-V_A+ \frac{0.8 \times 1.5}{\sqrt{ 0.8^2+1.5}}=0\\\\

\to V_A=  \frac{1.2}{\sqrt{ 0.64+1.5}}+1\\\\

        = \frac{1.2}{ 1.46}+1\\\\= \frac{1.2+ 1.46}{ 1.46}\\\\ = \frac{2.66}{1.46}\\\\= 1.82 \ \frac{m}{s}\\\\= 2 \ \frac{m}{s}

3 0
3 years ago
If a car sits out in the sun every day for a long time can light from the sun damage the car paint
Reika [66]

Answer:

i think yes it could make the color go lighter

Explanation:

6 0
3 years ago
Read 2 more answers
Design a ductile iron pumping main carrying a discharge of 0.35 m3/s over a distance of 4 km. The elevation of the pumping stati
snow_tiger [21]

Answer:

D=0.41m

Explanation:

From the question we are told that:

Discharge rate V_r=0.35 m3/s

Distance d=4km

Elevation of the pumping station h_p= 140 m

Elevation of the Exit point h_e= 150 m

Generally the Steady Flow Energy Equation SFEE is mathematically given by

h_p=h_e+h

With

P_1-P_2

And

V_1=V-2

Therefore

h=140-150

h=10

Generally h is give as

h=\frac{0.5LV^2}{2gD}

h=\frac{8Q^2fL}{\pi^2 gD^5}

Therefore

10=\frac{8Q^2fL}{\pi^2 gD^5}

D=^5\frac{8*(0.35)^2*0.003*4000}{3.142^2*9.81*10}

D=0.41m

8 0
3 years ago
Methane gas is 304 C with 4.5 tons of mass flow per hour to an uninsulated horizontal pipe with a diameter of 25 cm. It enters a
Arada [10]

Answer:

a) h_c = 0.1599 W/m^2-K

b) H_{loss} = 5.02 W

c) T_s = 302 K

d) \dot{Q} = 25.125 W

Explanation:

Non horizontal pipe diameter, d = 25 cm = 0.25 m

Radius, r = 0.25/2 = 0.125 m

Entry temperature, T₁ = 304 + 273 = 577 K

Exit temperature, T₂ = 284 + 273 = 557 K

Ambient temperature, T_a = 25^0 C = 298 K

Pipe length, L = 10 m

Area, A = 2πrL

A = 2π * 0.125 * 10

A = 7.855 m²

Mass flow rate,

\dot{ m} = 4.5 tons/hr\\\dot{m} = \frac{4.5*1000}{3600}  = 1.25 kg/sec

Rate of heat transfer,

\dot{Q} = \dot{m} c_p ( T_1 - T_2)\\\dot{Q} = 1.25 * 1.005 * (577 - 557)\\\dot{Q} = 25.125 W

a) To calculate the convection coefficient relationship for heat transfer by convection:

\dot{Q} = h_c A (T_1 - T_2)\\25.125 = h_c * 7.855 * (577 - 557)\\h_c = 0.1599 W/m^2 - K

Note that we cannot calculate the heat loss by the pipe to the environment without first calculating the surface temperature of the pipe.

c) The surface temperature of the pipe:

Smear coefficient of the pipe, k_c = 0.8

\dot{Q} = k_c A (T_s - T_a)\\25.125 = 0.8 * 7.855 * (T_s - 298)\\T_s = 302 K

b) Heat loss from the pipe to the environment:

H_{loss} = h_c A(T_s - T_a)\\H_{loss} = 0.1599 * 7.855( 302 - 298)\\H_{loss} = 5.02 W

d) The required fan control power is 25.125 W as calculated earlier above

5 0
3 years ago
Other questions:
  • Oil with a density of 800 kg/m3 is pumped from a pressure of 0.6 bar to a pressure of 1.4 bar, and the outlet is 3 m above the i
    9·1 answer
  • You are in charge of ordering the concrete for a basement wall concrete pour. The wall forms are all set up and ready. The wall
    7·1 answer
  • 6. PVC boxes are primarily used in new construction because it is simple to
    11·1 answer
  • What is the uncertainty in position of an electron of an atom if there is t 2.0 x 10' msec uncertainty in its velocity? Use the
    12·1 answer
  • Introduction to gear and gear ratios: If you have two gears of the same size does the output speed increase, decrease, or remain
    13·1 answer
  • Cold water at 20 degrees C and 5000 kg/hr is to be heated by hot water supplied at 80 degrees C and 10,000 kg/hr. You select fro
    14·1 answer
  • The 5 ft wide gate ABC is hinged at C and contacts a smooth surface at A. If the specific weight of the water is 62.4 lb/ft3 , f
    8·1 answer
  • When Hailey participated in a tree plantation drive, she wore her most comfortable loungewear. However, the same attire was not
    11·1 answer
  • 2. The following segment of carotid artery has an inlet velocity of 50 cm/s (diameter of 15 mm). The outlet has a diameter of 11
    13·1 answer
  • At what distance from the Earth’s surface is a 10,000 kg satellite if its potential energy is equal to –5.58 x 1011 J? (choose t
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!