1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
irinina [24]
3 years ago
8

A combined gas-steam power cycle uses a simple gas turbine for the topping cycle and a simpleRankine cycle for the bottoming cyc

le. Atmospheric air enters the compressor at 101 kPa and 20degC, and the maximum gas cycle temperature is 1100 degC. The compressor pressure ratio is 8;the compressor isentropic efficiency is 85 percent; and the gas turbine isentropic efficiency is 90percent. The gas stream leaves the heat exchanger at the saturation temperature of the steamflowing through the heat exchanger. Steam flows through the heat exchanger with a pressure of6000 kPa and leaves at 320 degC. The steam cycle condenser operates at 20 kPa, and the isentropic efficiency of the steam turbine is 90 percent. Determine the mass flow rate of the air through the air compressor required for this system to produce 100 MW of power. Use constant specific heats for air at room temperature. (ANSWER: 279 kg/s).
Engineering
1 answer:
Oduvanchick [21]3 years ago
5 0

Answer:

Mass flow of air = 242.9kg/s

Explanation:

Given.

p1 = 20kPa

p2 = 6000kPa.

r = 8

First, we need to get the enthalpy at p1 and p2

Using saturated liquid water tables

h1 = 251kJ/Kg where p1 = 20kPa

To get, h2; we'll add the work done by the pump to h1.

To get the work done by the pump, we'll set v1 to specific volume of water

v1 = 0.00102m³/Kg

So, h2 = h1 + v1(p2 - p1)

h2 = 251 + 0.00102(6000-20)

h2 = 257.0996 kJ/Kg

Then, we need h3 and s3 (s3, represent enthropy)

Using saturated liquid water tables where p = 6000kPa and T = 320°C

h3 = 2950kj/Kg

s3 = 6.190kj/kgK

The s3 will be equal s4.

With s4 = 6.190kj/kgK and p = 20kPa, we'll get h4s

h4s = 2040kJ/Kg

Calculating the real enthalpy, h4, given that the turbine efficiency = 90% = 0.9

h4 = h3 - u(h3 - h4s)

h4 = 2950 - 0.9(2950 - 2040)

h4 = 2,131 kJ/Kg

Calculating enthalpy, h5 where T = 293k, using the table of ideal gas of air

h5 = 294kj/kg

Using pressure ratio = 8 and Prandtl number = 1.28

Pr6 = r.Pr5 = 8 * 1.28 = 10.24

Calculating the enthalpy, h6s, using Pr6 = 10.24

h6s = 530kJ/kg

Calculating the real enthalpy, h6, given that the compressor efficiency = 85% = 0.85

h6 = h5 + (h6s-h5)/u

h6= 294 + (530 - 294)/0.85

h6 = 572 kJ/K

To determine enthalpy h7, we'll use T = 1393k, using the table of ideal gas of air

h7 = 1483kj/kg

Using pressure ratio = 8 and Prandtl number = 364

Pr8 = Pr7/r = 364/8 = 45.5

Calculating the enthalpy, h8s, using Pr8 = 45.5 and the cycls efficiency = 100%

h8s = 810kJ/kg

Calculating the real enthalpy, h8, given that the turbine efficiency = 90% = 0.9

h8 = h7 - u(h7-h8s)

h8 = 1483 - (1483 - 810)0.9

h8 = 877 kJ/K

For enthalpy h9, we'll use the given temperature T = 593l

h9 = 600k

Calculating the net work output of the steam

w = wt - wp

w = h3 - h4 - v(p2 - p1)

w = 2950 - 2131 - 0.00102(6000-20)

ws = 813kj/kg

Calculating the net work output of the gas

wg = wt - wc

w = (h7 - h8) - (h6 - h5)

w = (1483 - 877) - (572 - 294 )

wg = 328kj/kg

The energy Balance equation is given as

m1(h3-h2) = m2(h8-h9)

m2/m1 = (h3-h2)/(h8-h9)

m2/m1 = (2950-257)/(877-600)

m2/m1 = 9.722

Calculating the work output of the combined cycle

w = wg + m1/m2(ws)

w = 328 + 1/9.722*(813)

w = 411.62kj/kg

Given the power output process, = 100000kW

Mass flow of air = 100000/411.62

Mass flow of air = 242.9kg/s

You might be interested in
Direction: List down or enumerate the type of outlets you want to install on your dream house. Also indicate the quantity (in pi
Lorico [155]

Answer:

Apartment outlet 4pcs

Explanation:

6 0
2 years ago
A completely reversible heat pump produces heat ata rate of 300 kW to warm a house maintained at 24°C. Theexterior air, which is
Triss [41]

Answer:

Change in entropy S = 0.061

Second law of thermodynamics is satisfied since there is an increase in entropy

Explanation:

Heat Q = 300 kW

T2 = 24°C = 297 K

T1 = 7°C = 280 K

Change in entropy =

S = Q(1/T1 - 1/T2)

= 300(1/280 - 1/297) = 0.061

There is a positive increase in entropy so the second law is satisfied.

6 0
3 years ago
A monatomic ideal gas undergoes a quasi-static process that is described by the function p(????)=p1+3(????−????1) , where the st
Alenkasestr [34]

A pure gas made up only of atoms. The noble gases argon, krypton, and xenon are some examples.

Concepts:

Perfect gas law: Work performed on the system: PV = nRT W = -∫PdV

Energy preservation formula: U = Q + W

Reasoning:

W = nRT ln(Vi/Vf) when the process is isothermal.

The temperature is said to be constant, and we are given n, Pfinal, and Vfinal.

Calculation information:

(A) A process that is isothermal has a constant temperature.

PV = nRT, and hence, constant

nRT = PV = 101000 Pa*25*10-3 m3

For a process that is isothermal, W = nRT ln(Vi/Vf).

W/(nRT)=3000 J/(101000 Pa*25*10-3 m3)=-1.19

(The gas produces -W of labor.)

Vi = (25*10-3 m3)/3.28 = 7.62*10-3 m3 = 7.62 L where Vf/Vi = exp(1.19) = 3.28 Vi (b) for a perfect gas PV = nRT. 101000 Pa*25*10-3 m3 = (8.31 J/K) T. T = 303.85 K.

To know more about process click here:

brainly.com/question/29310303

#SPJ4

5 0
10 months ago
A hot brass plate is having its upper surface cooled by impinging jet of air at temperature of 15°C and convection heat transfer
gulaghasi [49]

Answer:

809.98°C

Explanation:

STEP ONE: The first step to take in order to solve this particular Question or problem is to find or determine the Biot value.

Biot value = (heat transfer coefficient × length) ÷ thermal conductivity.

Biot value = (220 × 0.1)÷ 110 = 0.2.

Biot value = 0.2.

STEP TWO: Determine the Fourier number. Since the Biot value is greater than 0.1. Tis can be done by making use of the formula below;

Fourier number = thermal diffusivity × time ÷ (length)^2.

Fourier number = (3 × 60 × 33.9 × 10^-6)/( 0.1)^2 = 0.6102.

STEP THREE: This is the last step for the question, here we will be calculating the temperature of the center plane of the brass plate after 3 minutes.

Thus, the temperature of the center plane of the brass plane after 3 minutes = (1.00705) (0.89199) (900- 15) + 15.

= > the temperature of the center plane of the brass plane after 3 minutes = 809.98°C.

5 0
2 years ago
Assume the work done compressing the He gas is -63 kJ and the internal energy change of the gas is 79 kJ. What is the heat loss
klemol [59]

Answer:

Heat gain of 142 kJ

Explanation:

We can see that job done by compressing the He gas is negative, it means that the sign convention we are going to use is negative for all the work done by the gas and positive for all the job done to the gas. With that being said, the first law of thermodynamics equation will help us to solve this problem.

ΔU = Q + W ⇒ Q = ΔU -W

Q = 79 - (-63) = 142 kJ

Therefore, the gas gained heat by an amount of 142 kJ.

3 0
3 years ago
Other questions:
  • Drag each tile to the correct box.
    15·1 answer
  • Vehicles arrive at a single toll booth beginning at 8:00 A.M. They arrive and depart according to a uniform deterministic distri
    9·1 answer
  • The water in a large lake is to be used to generate electricity by the installation of a hydraulic turbine-generator at a locati
    7·1 answer
  • Write down a transfer function of a stable system for which pure proportional feedback could drive the system unstable.
    11·1 answer
  • A block is sliding on a level surface of varying materials, and so its effective coefficient of friction is variable, 0.1t, wher
    6·1 answer
  • g A 30-m-diameter sedimentation basin has an average water depth of 3.0 m. It is treating 0.3 m3/s wastewater flow. Compute over
    8·1 answer
  • Question 11 (1 point)
    12·1 answer
  • A parallel plate capacitor has a separation of 2x10 m and free space between the plates. A 10 V battery is connected across the
    9·1 answer
  • An experiment to determine the convection coefficient associated with airflow over the surface of a thick stainless steel castin
    6·1 answer
  • In the construction of a large reactor pressure vessel, a new steel alloy with a plane strain fracture toughness of 55 MPa-m1/2
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!