Nitrogen oxides play a critical role in photochemical smog. They give the smog its yellowish-brown hue. Indoor residential appliances like gas stoves and gas or wood heaters can be significant emitters of nitrogen oxides in poorly ventilated environments.
- Nitrogen dioxide (NO₂), ozone (O₃), peroxyacetyl nitrate (PAN), and chemical compounds with the -CHO group are the main harmful elements of photochemical smog (aldehydes). If present in high enough amounts, PAN and aldehydes can harm plants and irritate the eyes.
- The greatest sources of emissions are power plants, heavy construction equipment driven by diesel, other moveable engines, and industrial boilers. Cars, trucks, and buses are next in line.
Therefore , on conclusion i.e. two gases with molecules consisting of nitrogen and oxygen atoms are nitric oxide (NO) and nitrogen dioxide (NO₂). These nitrogen oxides play a part in the development of smog and acid rain, adding to the issue of air pollution.
To know more about photochemical smog
brainly.com/question/15635778
#SPJ1
Answer:
Option C. 5,000 kg m/s
Explanation:
<u>Linear Momentum on a System of Particles
</u>
Is defined as the sum of the momenta of each particles in a determined moment. The individual momentum is the product of the mass of the particle by its speed
P=mv
The question refers to an 100 kg object traveling at 50 m/s who collides with another object of 50 kg object initially at rest. We compute the moments of each object


The sum of the momenta of both objects prior to the collision is


Air pressure decreases as altitude increases. this is because air pressure is caused by the gravity of earth, the gravity pulls on the air, compacting it and making a pressure.
But as we go higher, gravity decreases, causing less pull on the air resulting in less air pressure.<span />
Answer:

Explanation:
We are given that a parallel- plate capacitor is charged to a potential difference V and then disconnected from the voltage source.
1 m =100 cm
Surface area =S=


We have to find the charge Q on the positive plates of the capacitor.
V=Initial voltage between plates
d=Initial distance between plates
Initial Capacitance of capacitor

Capacitance of capacitor after moving plates


Potential difference between plates after moving








Hence, the charge on positive plate of capacitor=