Answer:
Explanation:
The inclined plane
An inclined plane consists of a sloping surface; it is used for raising heavy bodies. The plane offers a mechanical advantage in that the force required to move an object up the incline is less than the weight being raised (discounting friction). The steeper the slope, or incline, the more nearly the required force approaches the actual weight. Expressed mathematically, the force F required to move a block D up an inclined plane without friction is equal to its weight W times the sine of the angle the inclined plane makes with the horizontal (θ). The equation is F = W sin θ.
The lever
A lever is a bar or board that rests on a support called a fulcrum. A downward force exerted on one end of the lever can be transferred and increased in an upward direction at the other end, allowing a small force to lift a heavy weight.
The wedge
A wedge is an object that tapers to a thin edge. Pushing the wedge in one direction creates a force in a sideways direction. It is usually made of metal or wood and is used for splitting, lifting, or tightening, as in securing a hammer head onto its handle.
The wheel and axle
A wheel and axle is made up of a circular frame (the wheel) that revolves on a shaft or rod (the axle). In its earliest form it was probably used for raising weights or water buckets from wells.
Its principle of operation is best explained by way of a device with a large gear and a small gear attached to the same shaft. The tendency of a force, F, applied at the radius R on the large gear to turn the shaft is sufficient to overcome the larger force W at the radius r on the small gear. The force amplification, or mechanical advantage, is equal to the ratio of the two forces (W:F) and also equal to the ratio of the radii of the two gears (R:r)
Figure A shows cross section of a land form or rock. In Figure B, compression stress is applied on it. When compression stresses are applied on a rock, it squeezes the rock cause fold or fracture. The fault formed by compression stress is called thrust fault. If the compression stresses/ force continue to act on a rock it will converge and form thrust fault. In Figure C, tension stresses is applied on the rock. When a tension stress applied on a rock it deforms/ lengthen. There are three type of deformations occur due to tension stresses. One is elastic deformation, in which, rock retains it original shape when force/stresses are removed. Second is plastic deformation, in which rock lengthen and change occur permanently. Third type of deformation is result into fracture or breaking of rock. In Figure C, shear stresses are applied on rock. Shear stresses are applied with equal magnitude but in opposite direction. It cause breaking of rock.
The answer is Graph C. To explain, this is because as we look at the position vs time graph, we see that after the first second, it was 30 meters from the start. That would mean that it took 1 second to get to 30 meters. That is shown in Graph c
No "might<span>". The amount of CO2 in the </span>atmosphere<span> HAS gone up since the start of industrialisation as the result of </span>burning fossil fuels<span>.</span>
I'll go ahead and answer the ones here without an answer. For reference, the half-life formula is <em>final amount = original amount(1/2)^(time/half-life)</em>
<em />
4) 12.5g
x = 100(1/2)^(63/21)
5) 50g
3.125 = x(1/2)^(0.1/0.025)
6) 500g
x = 4000(1/2)^(525/175)
7) 0.24g
0.06 = x(1/2)^(11430/5730)
8) 125g
x = 1000(1/2)^(17100/5700)
Hope this helps! :)