1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nostrana [21]
3 years ago
10

If you went to a planet that had the twice the radius as Earth, but the same mass, a 1 kg pineapple would have a weight of

Physics
1 answer:
kicyunya [14]3 years ago
7 0

Use the law of universal gravitation, which says the force of gravitation between two bodies of mass <em>m</em>₁ and <em>m</em>₂ a distance <em>r</em> apart is

<em>F</em> = <em>G m</em>₁ <em>m</em>₂ / <em>r</em>²

where <em>G</em> = 6.67 x 10⁻¹¹ N m²/kg².

The Earth has a radius of about 6371 km = 6.371 x 10⁶ m (large enough for a pineapple on the surface of the earth to have an effective distance from the center of the Earth to be equal to this radius), and a mass of about 5.97 x 10²⁴ kg, so the force of gravitation between the pineapple and the Earth is

<em>F</em> = (6.67 x 10⁻¹¹ N m²/kg²) (1 kg) (5.97 x 10²⁴ kg) / (6.371 x 10⁶ m)²

<em>F</em> ≈ 9.81 N

Notice that this is roughly equal to the weight of the pineapple on Earth, (1 kg)<em>g</em>, where <em>g</em> = 9.80 m/s² is the magnitude of the acceleration due to gravity, so that [force of gravity] = [weight] on any given planet.

This means that on this new planet with twice the radius of Earth, the pineapple would have a weight of

<em>F</em> = <em>G m</em>₁ <em>m</em>₂ / (2<em>r</em>)² = 1/4 <em>G m</em>₁ <em>m</em>₂ / <em>r</em>²

i.e. 1/4 of the weight on Earth, which would be about 2.45 N.

You might be interested in
An electron is a particle with a ____.
Dahasolnce [82]

A beta particle. Hoped I help. Sorry if it wrong.

4 0
3 years ago
Read 2 more answers
Atoms of two different elements must have different
sergejj [24]

Explanation:

C. Atomic numbers....

4 0
3 years ago
When you slosh the water back and forth in a tub at just the right frequency, the water alternately rises and falls at each end,
Natali5045456 [20]
Slot in wwatwe to be determined for use
5 0
3 years ago
Which of the following rivers flows north in eastern Florida?
Zarrin [17]

St. John’s

_________

o0o0o0o0o0

6 0
2 years ago
Potassium is a crucial element for the healthy operation of the human body. Potassium occurs naturally in our environment and th
gregori [183]

Complete Question

Potassium is a crucial element for the healthy operation of the human body. Potassium occurs naturally in our environment and thus our bodies) as three isotopes: Potassium-39, Potassium-40, and Potassium-41. Their current abundances are 93.26%, 0.012% and 6.728%. A typical human body contains about 3.0 grams of Potassium per kilogram of body mass. 1. How much Potassium-40 is present in a person with a mass of 80 kg? 2. If, on average, the decay of Potassium-40 results in 1.10 MeV of energy absorbed, determine the effective dose (in Sieverts) per year due to Potassium-40 in an 80- kg body. Assume an RBE of 1.2. The half-life of Potassium-40 is 1.28 * 10^9years.

Answer:

The potassium-40 present in 80 kg is  Z = 0.0288 *10^{-3}\ kg

The effective dose absorbed per year is  x = 2.06 *10^{-24} per year

Explanation:

From the question we are told that

      The mass of potassium in 1 kg of human body is m =  3g= \frac{3}{1000} =  3*10^{-3} \ kg

      The mass of the person is M = 80 \ kg

       The abundance of Potassium-39 is   93.26%

        The abundance of Potassium-40 is   0.012%

         The abundance of Potassium-41 is   6.78 %

         The energy absorbed is  E =  1.10MeV = 1.10 *10^{6} * 1.602 *10^{-19} = 1.7622*10^{-13} J

Now  1 kg of human body contains       3.0*10^{-3}\ kg of  Potassium

So      80 kg of human body contains      k kg of  Potassium

=>   k = \frac{ 80 * 3*10^{-3}}{1}

     k = 0.240\  kg

Now from the question potassium-40 is  0.012% of the total  potassium so

     Amount of potassium-40  present is mathematically represented as

            Z = \frac{0.012}{100}  * 0.240

            Z = 0.0288 *10^{-3}\ kg

The effective dose (in Sieverts) per year due to Potassium-40 in an 80- kg body is mathematically evaluated as

           D =  \frac{E}{M}

Substituting values

          D =  \frac{1.7622*10^{-13}}{80}

            D =  2.2*10^{-15} J/kg

Converting to Sieverts

We have

           D_s = REB * D

           D_s = 1.2 * 2.2 *10^{-15}

           D_s =  2.64 *10^{-15}

So

     for half-life (1.28 *10^9 \ years)  the dose is  2.64 *10^{-15}

     Then for 1  year the dose would be  x

=>         x = \frac{2.64 *10^{-15}}{1.28 * 10^9}

             x = 2.06 *10^{-24} per year      

7 0
3 years ago
Other questions:
  • A 3-kg wheel with a radius of 35 cm is spinning in the horizontal plane about a vertical axis through its center at 800 rev/s. A
    7·1 answer
  • Solar system help please!
    15·1 answer
  • Krishne wants to measure the mass and volume of a thimble. Which tools should she use?
    11·1 answer
  • Which of the following is an example or an orginasm mantaining homeostasis
    5·1 answer
  • Was the significant digits convention indicative of your uncertainty in the measurements above
    14·1 answer
  • If an organism had the following organelles: mitochondria, chloroplast, ribosome, nucleus, cell wall, and cell membrane, what ty
    15·1 answer
  • The gazelle travels 2 km in a half hour.The gazelle's average speed is:
    9·1 answer
  • The potential difference between points A and B in an electric
    9·1 answer
  • Given f(x)=2x+7, which of the following is the value of x when f(x)=13?
    7·1 answer
  • Please help me solve this! :)
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!