Answer:
The kinetic energy of the system after the collision is 9 J.
Explanation:
It is given that,
Mass of object 1, m₁ = 3 kg
Speed of object 1, v₁ = 2 m/s
Mass of object 2, m₂ = 6 kg
Speed of object 2, v₂ = -1 m/s (it is moving in left)
Since, the collision is elastic. The kinetic energy of the system before the collision is equal to the kinetic energy of the system after the collision. Let it is E. So,
E = 9 J
So, the kinetic energy of the system after the collision is 9 J. Hence, this is the required solution.
Answer:
181.54 K
Explanation:
From gas laws, we know that v1/t1= v2/t2 where v and t represent volume and temperatures, 1 and 2 for the first and second container. Making t2 the subject of the formula then
T2=v2t1/ v1
Given information
V1 435 ml
V2 265 ml
T1 298K
Substituting the given values then
T2=265*298/435=181.54 K
Answer:
Explanation:
It is given that, a proton moves at constant velocity, through a region in which there is an electric field and a magnetic field such that,
The electric field is, E = 800 V/m
Magnetic field, B = 0.25 T
We know that the net force in the region of magnetic and electric field is given by Lorentz forces. But here, the proton moves with constant velocity. So, the net force acting on it is 0.
i.e.
Hence, this is the required solution.
<span>Because P = W ÷ t, and W = F*t, you can substitute (W) for (F*t). Then substitute (F) for (m*a). This will leave you with P = (m*a*d)/t. Since you need velocity, youd want to solve for a so you can use v = a*t. a = (P*t)/(m*d) therefore, substituting a in v = a*t, v = (P*t*t)/(m*d)</span>