Answer:
Most of these rocks are not made up of common geometric shapes
Explanation:
Because most rocks are not made up of common geometric shapes, it would be difficult or impossible to find the volume of a rock using a ruler; there would be no easy way to measure the rock's volume using a ruler
Hope this helped!
To determine the standard heat of reaction, ΔHrxn°, let's apply the Hess' Law.
ΔHrxn° = ∑(ν×ΔHf° of products) - ∑(ν×ΔHf° of reactants)
where
ν si the stoichiometric coefficient of the substances in the reaction
ΔHf° is the standard heat of formation
The ΔHf° for the substances are the following:
CH₃OH(l) = -238.4 kJ/mol
CH₄(g) = -74.7 kJ/mol
O₂(g) = 0 kJ/mol
ΔHrxn° = (1 mol×-74.7 kJ/mol) - ∑(1 mol×-238.4 kJ/mol)
ΔHrxn° = +163.7 kJ
Answer:
The answer to the question is
The specific heat capacity of the alloy = 1.77 J/(g·°C)
Explanation:
To solve this, we list out the given variables thus
Mass of alloy = 45 g
Initial temperature of the alloy = 25 °C
Final temperature of the alloy = 37 °C
Heat absorbed by the alloy = 956 J
Thus we have
ΔH = m·c·(T₂ - T₁) where ΔH = heat absorbed by the alloy = 956 J, c = specific heat capacity of the alloy and T₁ = Initial temperature of the alloy = 25 °C , T₂ = Final temperature of the alloy = 37 °C and m = mass of the alloy = 45 g
∴ 956 J = 45 × C × (37 - 25) = 540 g·°C×c or
c = 956 J/(540 g·°C) = 1.77 J/(g·°C)
The specific heat capacity of the alloy is 1.77 J/(g·°C)
1-PRIMARY ALKANOL 2-SECONDARY ALKANOL 3-TERTIARY ALKANOL