Answer: calories?
Explanation: but isn’t it 1 calorie = 4.184 joules of energy
The dissociation of formic acid is:

The acid dissociation constant of formic acid,
is:
![k_a = \frac{[HCOO^{-}] [H^{+}]}{HCOOH}](https://tex.z-dn.net/?f=%20k_a%20%3D%20%5Cfrac%7B%5BHCOO%5E%7B-%7D%5D%20%20%5BH%5E%7B%2B%7D%5D%7D%7BHCOOH%7D%20%20%20%20%20)
Rearranging the equation:
![\frac{[HCOO^{-}]}{[HCOOH]} = \frac{k_a}{[H_+]}](https://tex.z-dn.net/?f=%20%5Cfrac%7B%5BHCOO%5E%7B-%7D%5D%7D%7B%5BHCOOH%5D%7D%20%3D%20%5Cfrac%7Bk_a%7D%7B%5BH_%2B%5D%7D%20)
pH = 2.75
![pH = -log[H^{+}]](https://tex.z-dn.net/?f=%20pH%20%3D%20-log%5BH%5E%7B%2B%7D%5D%20)
![[H^{+}]= 10^{-2.75} = 1.78 \times 10^{-3}](https://tex.z-dn.net/?f=%20%5BH%5E%7B%2B%7D%5D%3D%2010%5E%7B-2.75%7D%20%3D%201.78%20%5Ctimes%2010%5E%7B-3%7D%20)


Substituting the values in the equation:
![\frac{[HCOO^{-}]}{[HCOOH]} = \frac{k_a}{[H_+]}](https://tex.z-dn.net/?f=%20%5Cfrac%7B%5BHCOO%5E%7B-%7D%5D%7D%7B%5BHCOOH%5D%7D%20%3D%20%5Cfrac%7Bk_a%7D%7B%5BH_%2B%5D%7D%20)
![\frac{[HCOO^{-}]}{[HCOOH]} = \frac{1.78\times 10^{-4}}{1.78\times 10^{-3}}](https://tex.z-dn.net/?f=%20%5Cfrac%7B%5BHCOO%5E%7B-%7D%5D%7D%7B%5BHCOOH%5D%7D%20%3D%20%5Cfrac%7B1.78%5Ctimes%2010%5E%7B-4%7D%7D%7B1.78%5Ctimes%2010%5E%7B-3%7D%7D%20%20%20)
Hence, the ratio is
.
Answer:
water vapor
because solid ice is a matter
Answer:
The molar concentration of HCl in the aqueous solution is 0.0131 mol/dm3
Explanation:
To get the molar concentration of a solution we will use the formula:
<em>Molar concentration = mass of HCl/ molar mass of HCl</em>
<em></em>
Mass of HCl in the aqueous solution will be 40% of the total mass of the solution.
We can extract the mass of the solution from its density which is 1.2g/mL
We will further perform our analysis by considering only 1 ml of this aqueous solution.
The mass of the substance present in this solution is 1.2g.
<em>The mass of HCl Present is 40% of 1.2 = 0.48 g.</em>
The molar mass of HCl can be obtained from standard tables or by adding the masses of Hydrogen (1 g) and Chlorine (35.46 g) = 36.46g/mol
Therefore, the molar concentration of HCl in the aqueous solution is 0.48/36.46 = 0.0131 mol/dm3