It depends, You have to have the length and the width of the crest wave.
The spring constant is 181.0 N/m
Explanation:
We can solve the problem by applying the law of conservation of energy. In fact, the elastic potential energy initially stored in the compressed spring is completely converted into gravitational potential energy of the dart when the dart is at its maximum height. Therefore, we can write:

where the term on the left represents the elastic potential energy of the spring while the term on the right is the gravitational potential energy of the dart at maximum height, and where
k is the spring constant of the spring
x = 2.08 cm = 0.0208 m is the compression of the spring
m = 12.3 g = 0.00123 kg is the mass of the dart
is the acceleration due to gravity
h = 3.25 m is the maximum height of the dart
Solving for k, we find:

Learn more about potential energy:
brainly.com/question/1198647
brainly.com/question/10770261
#LearnwithBrainly
Answer : The mass of a sample of water is, 888.89 grams
Explanation :
Latent heat of vaporization : It is defined as the amount of heat energy released or absorbed when the liquid converted to vapor at atmospheric pressure at its boiling point.
Formula used :

where,
q = heat = 2000 kJ =
(1 kJ = 1000 J)
L = latent heat of vaporization of water = 
m = mass of sample of water = ?
Now put all the given values in the above formula, we get:

(1 kg = 1000 g)
Therefore, the mass of a sample of water is, 888.89 grams
Answer:
The induced current direction as viewed is clockwise
Explanation:
Lenz's Law states that the induced e. m. f. causes current to be driven in the loop of wire in such a way as to generate magnetic field that are oppose the magnetic flux change which is the source of the induced current
Therefore, as the magnet approaches the coil with the south pole, the coil produces current equivalent to the upward movement of the south pole of a permanent magnet through it which according to Flemings Right Hand Rule is clockwise
Therefore;
The direction of the induced current in the loop (as viewed from above, looking down the magnet) is clockwise
Answer:
The current through the tube is 73.39A.
Explanation:
The relationship between the resistivity
, the electric field
, and the current density
is given by

This equation can be solved for
to get:

Since the current is 

Now, for the tube of mercury
,
, and the area is
; therefore,


Hence, the current through the mercury tube is 73.39A.