Answer:
(i) The wavelength is 0.985 m
(ii) The frequency of the wave is 36.84 Hz
Explanation:
Given;
mass of the string, m = 0.0133 kg
tensional force on the string, T = 8.89 N
length of the string, L = 1.97 m
Velocity of the wave is:

(i) The wavelength:
Fourth harmonic of a string with two nodes, the wavelength is given as,
L = 2λ
λ = L/2
λ = 1.97 / 2
λ = 0.985 m
(ii) Frequency of the wave is:
v = fλ
f = v / λ
f = 36.29 / 0.985
f = 36.84 Hz
Answer:
Sorry cant find the answer but i hope you got it right and if you didn't you'll still do great. :)
Explanation:
Answer: Rn :)))) no explanation needed
A car with a velocity of 22 m/s is accelerated at a rate of 1.6
for 6.8s has the final velocity t be 32.88 m/s.
The acceleration means the amount of velocity changing per unit time.
The given data:
initial velocity, u = 22 m/s
time, t = 6.8 s
acceleration, a = 1.6 
We will be using the equation of motion:
v = u + at



The final velocity become 32.88 m/s.
To learn more about Attention here:
https://brainly.in/question/10557838
#SPJ4
The formula for average speed is

So we can just substitute our data.

- its the result