Answer:
Mass of the wooden Block is 20g.
Explanation:
The buoyant force equation will be used here
Buoyant Force= ρ*g*1/2V Here density used is of water
m*g= ρ*g*1/2V
Simplifying the above equation
2m= ρ*V Eq-1
Also we know from the question that
ρ*V = m + 0.020 Eq-2 ( Density = (Mass+20g)/Volume )
Equating Eq-1 & Eq-2 we get
2m = m+0.020
m = 0.020kg
m = 20g
Es el conjunto de longitudes de onda de todas las radiaciones electromagnéticas
Answer: Our body contains chemical potential energy from food we have eaten.
This chemical potential energy is transformed into the kinetic energy of our hands and arms as we rub our hands together.
As our hands move past each other and rub against each other, friction allows the kinetic energy to be transformed into thermal energy on the surface of our hands.
Explanation:
It is true that our food contains chemical bonds and these bonds have potential energy stored. So, when we eat food then our body acquires chemical potential energy.
When we rub our hands and arms then they form kinetic energy as atoms present within the skin of our hands come into motion. This rubbing of hands leads to the formation of heat which means thermal energy is being generated.
Thus, we can conclude that our body contains chemical potential energy from food we have eaten.
This chemical potential energy is transformed into the kinetic energy of our hands and arms as we rub our hands together.
As our hands move past each other and rub against each other, friction allows the kinetic energy to be transformed into thermal energy on the surface of our hands.
First
let us imagine the projectile launched at initial velocity V and at angle
θ relative to the horizontal. (ignore wind resistance)
Vertical component y:
The
initial vertical velocity is given as Vsinθ
The moment the projectile reaches the maximum
height of h, the vertical velocity
will be 0, therefore the time t taken to attain this maximum height is:
h = Vsinθ - gt
0 = Vsinθ - gt
t = (Vsinθ)/g
where
g is acceleration due to gravity
Horizontal component x:
The initial horizontal velocity is given as Vcosθ. However unlike
the vertical component, this horizontal velocity remains constant because this is unaffected by gravity. The time to travel the
horizontal distance D is twice the value of t times the horizontal velocity.
D = Vcosθ*[(2Vsinθ)/g]
D = (2V²sinθ cosθ)/g
D = (V²sin2θ)/g
In order for D (horizontal distance) to be
maximum, dD/dθ = 0
That is,
2V^2 cos2θ / g = 0
And since 2V^2/g must not be equal to zero, therefore cos(2θ) = 0
This is true when 2θ = π/2 or θ = π/4
Therefore it is now<span> shown that the maximum horizontal travelled is attained when
the launch angle is π/4 radians, or 45°.</span>
The answer is Marie Skłodowska Curie (AKA Marie Curie). She <span>lived her life awash in ionizing radiation. She would be carrying bottles of the radium and polonium in the pocket of her coat and put them in her desk drawer.
So even after a century, her papers are still radioactive. Since the</span><span> most general isotope of radium, which is radium-226, has a half life of 1,601 years.</span>