Answer:
C) 1.0 m
Explanation:
The component of the velocity parallel to the sidewalk is:
vₓ = v cos θ
vₓ = 0.1 m/s cos 45°
vₓ = 0.0707 m/s
The distance traveled after 14 seconds is:
d = vₓ t
d = (0.0707 m/s) (14 s)
d = 0.99 m
Closest answer is C) 1.0 m.
Answer:
The potential difference across the plates is 226 V.
Explanation:
Given;
area of the capacitor plate, A = 0.2 m²
separation, d = 0.1 mm = 0.1 x 10⁻³ m
charge on each plate, Q = 4 x 10⁻⁶ C
Charge on the capacitor is given by;
Q = CV
Where;
C is the capacitance of the capacitor, given as;
C = ε₀A / d
Then, the potential difference across the plates is given by;

Therefore, the potential difference across the plates is 226 V.
1. If we increase the distance to twice it's original value, the light intensity is reduced by one-fourth, the light intensity would be:
I0/4
2. rms magnetic field is inversely proportional to distance, so the new rms magnetic field would be:
B0/2
3. average energy density is inversely proportional to the square of the distance, so the new average energy density is:
E0/4
They have the same velocity because their displacements (shortest line from point A to point B, which is a straight line) are the same and they meet at the same time.
Answer:
Explanation:
Let the extension in the spring be x .
restoring force = weight of block
kx = mg
x = 
= 23.84 cm
b )
When the elevator is going upwards
Restoring force = mg + ma
k x₁ = 10.9 ( 9.8 + 1.89 )
x₁ = 28.44 cm
( y coordinate will be - ( 28.44 - 23.84 ) = - 4.6 cm )
c ) When the cable snaps , both elevator and block undergo free fall . In this case apparent g = 0
Since the spring is stretched by 28.44 cm , a restoring force continues to act on the block which is equal to
.2844 x 448
= 127.41 N
So a net acceleration a will act on the block
a = 127.41 / 10.9
= 11.68 m / s²
The block will undergo SHM with amplitude equal to 28.44 cm .