Answer:
A) Increases by a factor of 2
Explanation:
Kinetic energy can be defined as an energy possessed by an object or body due to its motion.
Mathematically, kinetic energy is given by the formula;

Where;
K.E represents kinetic energy measured in Joules.
M represents mass measured in kilograms.
V represents velocity measured in metres per seconds square.
Given that mass, m = 2m
Substituting into the equation, we have;
K.E = ½mv²
K.E = ½*2mv²
Cross-multiplying, we have;
2K.E = 2mv²
Hence, if the mass of an object increases by a factor 2, kinetic energy is increased by a factor of 2.
this is basically the same as volume, no?
So, 5.345*4.128*3.859=85.145
Answer:
60 kg m/s
Explanation:
Let
be the acceleration of the object.
As the acceleration of the object is constant, so

Given that applied force, F=6.00 N,
From Newton's second law, we have
,
[from equation (i)]


[given that time, t=10 s and F=6 N]

Here mv is the final momentum of the object and mu is the initial momentum of the object.
So, the change in the momentum of the object is mv-mu.
Hence, the change in the momentum of the object is 60 kg m/s.
Answer:

Explanation:
We need to apply conservation of momentum and energy to solve this problem.
<u>Conservation of momentum</u>

(1)
- m(c) is the mass of stick clay
- m(w) is the mass of the wooden block
- v(ic) is the initial velocity of clay
- V is the final velocity of the system clay plus wood.
<u>Conservation of total energy</u>
The change in kinetic energy is equal to the change in internal energy, in our case it would be the energy loss due to the friction force. Let's recall the definition of work, it is the dot product between force and displacement, Therefore:



We can find V from this equation:

Now, let's put V into the equation (1) and find v(ic)

I hope it helps you!
<u />