Answer:
the rotational inertia of the cylinder = 4.85 kgm²
the mass moved 7.942 m/s
Explanation:
Formula for calculating Inertia can be expressed as:

For calculating the rotational inertia of the cylinder ; we have;




I ≅ 4.85 kgm²
mg - T ma and RT = I ∝
T = 


a = 4.1713 m/s²
Using the equation of motion

He produced the first orderly arrangement of known elements, he used patterns to predict undiscovered elements
to be franc i really think the answer is B
Answer: 14. 49 m
Explanation:
We can solve this problem with the following equations:
(1)
(2)
Where:
is the horizontal distance between the cannon and the ball
is the cannonball initial velocity
since the cannonball was shoot horizontally
is the time
is the final height of the cannonball
is the initial height of the cannonball
is the acceleration due gravity
Isolating
from (2):
(3)
(4)
(5)
Substituting (5) in (1):
(6)
Finally: