The following
are the answers to the questions presented:
a. The joules of energy required to run a 100W light bulb for one day is 8640000J
b. The amount of coals that has to be burned to light that light bulb for one day is 0.96kg
The solution would
be like this for this specific problem:
<span>P=<span>W/s</span>→W=Pt=100W1day <span><span>24h/</span><span>1day </span></span><span><span>3600s/</span><span>1h</span></span>=8640000J</span>
<span>W=<span>30/100</span>wm→m=<span><span>100W/</span><span>30w</span></span>=<span><span>100×8640000J/</span><span>30×30×<span>10in thepowerof6 </span><span>J/<span>kg</span></span></span></span>=0.96kg</span>
<span>I am hoping that
these answers have satisfied your queries and it will be able to help you in
your endeavors, and if you would like, feel free to ask another question.</span>
<span>a solution is a liquid mixture </span>
Answer:
<h2>6000 kg.m/s</h2>
Explanation:
The momentum of an object can be found by using the formula
momentum = mass × velocity
From the question we have
momentum = 2000 × 3
We have the final answer as
<h3>6000 kg.m/s</h3>
Hope this helps you
Answer:
a. μ
3 ± 1.8 = [1.2,4.8]
b. The correct answer is option D. No, because the sample size is large enough.
Explanation:
a. The population mean can be determined using a confidence interval which is made up of a point estimate from a given sample and the calculation error margin. Thus:
μ
±(t*s)/sqrt(n)
where:
μ
= is the 95% confidence interval estimate
x_ = mean of the sample = 3
s = standard deviation of the sample = 5.8
n = size of the sample = 41
t = the t statistic for 95% confidence and 40 (n-1) degrees of freedom = 2.021
substituting all the variable, we have:
μ
3 ± (2.021*5.8)/sqrt(41) = 3 ± 1.8 = [1.2,4.8]
b. The correct answer is option D. No, because the sample size is large enough.
Using the the Central Limit Theorem which states that regardless of the distribution shape of the underlying population, a sampling distribution of size which is ≥ 30 is normally distributed.
The shirt absorbs the sunlight, so it appears white. All the light is reflected, so the shirt appears white. The sunlight refracts when it hits the shirt, so the shirt appears white.