Answer:
In chemistry, a reaction mechanism is the step by step sequence of elementary reactions by which overall chemical change occurs. A chemical mechanism is a theoretical conjecture that tries to describe in detail what takes place at each stage of an overall chemical reaction.
Explanation:
Answer:
= 15.51 mL
Explanation:
Here's is the reaction:
2HgO(s) ⇒ 2 Hg(s)+O₂(g)
In this reaction 2mol HgO = 1mol O₂
The molecular weight of HgO = 216.59g
so, 3.0g HgO = 3.0g x 1.00molHgO/216.59gHgO
= 0.0138511 molHgO
The amount of Oxygen follows:
0.0138511 molHgOx1/2= 0.00692555 mol O₂
Now, volume of 1 any gas = 22400mL
so, 0.00692555 mol O₂ x22400mLO₂/1mol O₂
= 15.513232mL O₂
The temperature is constant which makes it the independent variable
Answer:
108 kPa
Step-by-step explanation:
To solve this problem, we can use the <em>Combined Gas Laws</em>:
p₁V₁/T₁ = p₂V₂/T₂ Multiply each side by T₁
p₁V₁ = p₂V₂ × T₁/T₂ Divide each side by V₁
p₁ = p₂ × V₂/V₁ × T₁/T₂
Data:
p₁ = ?; V₁ = 34.3 L; T₁ = 31.5 °C
p₂ = 122.2 kPa; V₂ = 29.2 L; T₂ = 21.0 °C
Calculations:
(a) Convert temperatures to <em>kelvins
</em>
T₁ = (31.5 + 273.15) K = 304.65 K
T₂ = (21.0 + 273.15) K = 294.15 K
(b) Calculate the <em>pressure
</em>
p₁ = 122.2 kPa × (29.2/34.3) × (304.65/294.15)
= 122.2 kPa × 0.8542 × 1.0357
= 108 kPa
Answer:
I am pretty sure the correct answer is a reproductive system