Answer:
FB = 0.187 N
Explanation:
To find the magnetic force FB in the wire you use the following formula:

the angle between B and L is given by:

Due to B depends on "y" you take into account the contribution of each element dy of the wire to the magnitude of the magnetic force. Thus, you have to integrate the following expression:
![|\vec{F_B}|=Isin\theta\int_0^{0.25}B(y)dy=Isin\theta\int_0^{0.25}(0.5y)dy\\\\|\vec{F_B}|=(2.0*10^{-3}A)(sin36.86\°)(0.5T)[\frac{0.25^2}{2}m]=0.187\ N](https://tex.z-dn.net/?f=%7C%5Cvec%7BF_B%7D%7C%3DIsin%5Ctheta%5Cint_0%5E%7B0.25%7DB%28y%29dy%3DIsin%5Ctheta%5Cint_0%5E%7B0.25%7D%280.5y%29dy%5C%5C%5C%5C%7C%5Cvec%7BF_B%7D%7C%3D%282.0%2A10%5E%7B-3%7DA%29%28sin36.86%5C%C2%B0%29%280.5T%29%5B%5Cfrac%7B0.25%5E2%7D%7B2%7Dm%5D%3D0.187%5C%20N)
hence, the magnitude of the magnetic force is 0.187N
The relative motion of gaseous particles increases with increase in the temperature of the gas molecules just like the motion of popcorn in a popper increases when heat is applied to the popper.
<h3>What is kinetic theory of gas?</h3>
The kinetic theory of gases or matter states that matter consists of tiny particles which are constant motion, colliding with one another and with walls of the containing vessels.
Just like a popcorn in a popcorn popper pops when heat is applied to the popper, gases contained in a cylinder increases their speed when they acquire more kinetic energy as the temperature of the cylinder increases.
Thus, the motion of gas particles depends on the temperature of the containing vessel so also does the random motion of popcorn depends on the temperature of the popper.
Learn more about kinetic theory of gases here: brainly.com/question/11067389
#SPJ1
Answer:
28 degree C
Explanation:
We are given that




We have to find the temperature on a spring day when resistance is 215.1 ohm.
We know that

Using the formula




Hence, the temperature on a spring day 28 degree C.
That's true, and there are also other mechanisms that can also create floods.