Answer:
We can also prove the conservation of mechanical energy of a freely falling body by the work-energy theorem, which states that change in kinetic energy of a body is equal to work done on it. i.e. W=ΔK. And ΔE=ΔK+ΔU. Hence the mechanical energy of the body is conserved
Explanation:
Given that the density of heptane is

The mass of heptane is

The density of water is

The mass of water is

The volume of heptane will be

The volume of water will be

Thus, the volume of heptane is 45.32 mL and the volume of water is 37 mL.
The total volume of liquid in the cylinder will be

The total volume of liquid in the cylinder will be 82.32 mL.
PART A) Yes, the fact that there is a frictional force acting on the satellite generates a loss of energy due to friction. What causes satellite to diminish its orbit during its tour. In fact, many satellites have rectifier systems that allow them to position themselves and remain in their orbit for a long time to avoid being trapped by the Earth's gravity Force and fall into the atmosphere where they would probably be torn apart.
PART B) As a similarity, one could start by mentioning the structure of the two equations are similar and have their own constants who were responsible for supporting them. While the law of gravity speaks of the masses of the bodies the electrostatic law speaks of the charges of the bodies. For both the force is inversely proportional to the square of the distance that separates them.
However, the most notable difference between them is basically their statement. While one of the equations speaks about greavedad the other reflects the electromagnetic phenomena. It should be noted that the force of gravity is much weaker than the electromagnetic force and that the latter has the capacity of attraction and repulsion. While the gravitational force only that of attraction.
Laws and theories are similar in that they are both scientific statements that result from a tested hypothesis and are supported by scientific evidence.