I attached a free body diagram for a better understanding of this problem.
We start making summation of Moments in A,



Then we make a summation of Forces in Y,



At the end we calculate the angle with the sin.


Answer:
A sound wave can be affected by a lot of different variables. As an audio engineer some of the more common things we deal with involve air temperature, humidity and even wind. The first two affect the speed at which the wave travels, while wind can actually cause a phase like effect if it is blowing hard enough. Another big one though not directly related to the air is walls and other solid objects that cause the sound wave to bounce off of them and reflect. This causes a secondary wave that isn’t as strong as the first wave but is the cause of “muddy” sounding venues when you are indoors.
Explanation:
Answer:
"It will be more than the speed of sound waves in air at 20*C and water at 20*C."
Explanation:
Speed of sound in a medium depends upon the density and elasticity of the medium.
If the elasticity of a medium is greater and the density of that medium is lower, sound will travel faster. Although density is also a factor but the major factor is Elasticity.
Hence, sound travel faster in solids than in liquids and even slower in gases due to elasticity difference.

That is why the speed of sound in glass will be more than the speed of sound waves in air at 20*C and water at 20*C.
Answer:
a) 
b) 
c)
d) 
Explanation:
Given:
- mass of the astronaut,

- vertical displacement of the astronaut,

- acceleration of the astronaut while the lift,

a)
<u>Now the force of lift by the helicopter:</u>
Here the lift force is the resultant of the force of gravity being overcome by the force of helicopter.

where:
force by the helicopter
force of gravity


b)
The gravitational force on the astronaut:



d)
Since the astronaut has been picked from an ocean we assume her initial velocity to be zero, 
using equation of motion:



c)
Hence the kinetic energy:



Answer:
what are the options for me