Answer:
- Decreasing the resistance
- Using a shorter length
- Using a smaller area wire
Explanation:
Formula for conductance in wires is;
G = 1/R
Where;
G is conductance
R is resistance
This means that increasing the resistance leads to a larger denominator and thus a smaller conductance but to decrease the denominator means larger conductance.
Thus, to increase the conductance, we have to decrease the resistance.
Resistance here has a formula of;
R = ρL/A
Where;
ρ is resistivity
L is length of wire
A is area
Thus, to decrease the resistance, we will have to use a shorter length and smaller area of wire.
Answer:
<em>The magnitude of the force is 10 N</em>
Explanation:
<u>Coulomb's Law</u>
The electrostatic force between two charged objects is directly proportional to the product of their charges and inversely proportional to the square of the distance between the two objects.
Written as a formula:

Where:

q1, q2 = the objects' charge
d= The distance between the objects
We have two identical charges of q1=q2=1 c separated by d=30000 m, thus the magnitude of the force is:


F = 10 N
The magnitude of the force is 10 N
When two forces act in the same direction, they add together. ... Equal forces acting in opposite directions are called balanced forces. Balanced forces acting on an object will not change the object's motion. When you add equal forces in opposite direction, the net force is zero.
Answer:
Explanation:
Hi!
In order to obtain the Lagrangian of the system we must first write the Kinetic and Potential Energies. Lets orient our axes such that the axis of the cone coincide with the z axis. In cilindrical coordinates we have
- (1)
But, since the particle is constrained to move on the surface of the cilinder, we have the following relation between r and z:

or:
- (2)
and:
replacing (2) in (1) we obtain:
- (3)
Now the kinetic energy is given as:
- (4)
And the potential energy is given by:

So the Langrangian is given by:

And the equations of motion are:
For θ

For r

Obtained from the Euler-Langrange equations
Here the conserved quantity is given by the first equation of motion, namely:

Which is the magnitude of the angular momentum
1# The ball flying through the air has two types of energy, kinetic from its velocity and potential from its height off the ground.