The velocity of the ball when it reaches the ground is equal to B. 68.6 m/s. This value was obtained from the formula Vf = Vi + at. Vf is the final velocity. Vi is the initial velocity. The acceleration is "a", while the time of travel is "t". The solution is:
<span>Vf = Vi + at
</span>Vf = 0 + (-9.8 m/s^2) (7 s)
Vf = -68.6 m/s
The negative sign denotes the direction of the ball.
Answer:

Explanation:
When a standing wave is formed with six loops means the normal mode of the wave is n=6, the frequency of the normal mode is given by the expression:

Where
is the length of the string and
the velocity of propagation. Use this expression to find the value of
.

The velocity of propagation is given by the expression:

Where
is the desirable variable of the problem, the linear mass density, and
is the tension of the cord. The tension is equal to the weight of the mass hanging from the cord:

With the value of the tension and the velocity you can find the mass density:


B because the the organism is changing into another chemical form
Bernini's sculpture "Apollo and Daphne" implies a chase scene motion. Apollo and Daphne<span> is a life-sized Baroque marble </span>sculpture<span> by Italian artist Gian Lorenzo </span>Bernini<span>, executed between 1622 and 1625. Hope this answers the question. Have a nice day.</span>